
CorsairHMI Manual 

  



2 | P a g e  
 

6/27/2020 

 

 

Contents 
Overview ..................................................................................................................................................... 16 

Features ...................................................................................................................................................... 16 

Alarming .................................................................................................................................................. 16 

Sounds ..................................................................................................................................................... 16 

Trending .................................................................................................................................................. 16 

Data Logs ................................................................................................................................................. 16 

Plotted Data ............................................................................................................................................ 17 

TBT .......................................................................................................................................................... 17 

Email ........................................................................................................................................................ 17 

Event Logging .......................................................................................................................................... 17 

Corrections .............................................................................................................................................. 21 

Architectures ............................................................................................................................................... 21 

MBHR ...................................................................................................................................................... 21 

Plantwide Interface ................................................................................................................................. 23 

Multiple Models ...................................................................................................................................... 24 

Enterprise Interface ................................................................................................................................ 24 

Web ......................................................................................................................................................... 24 

Serial Terminal ........................................................................................................................................ 24 

Licensing ...................................................................................................................................................... 25 

Strategic Fit ................................................................................................................................................. 25 

Linux ........................................................................................................................................................ 25 

Education ................................................................................................................................................ 26 

Future Directions ........................................................................................................................................ 27 

Distributed Hosting ................................................................................................................................. 27 

Streaming Serial ...................................................................................................................................... 31 

Comparison of Corsair Viewing Options ..................................................................................................... 32 



3 | P a g e  
 

Operating the Corsair Interface .................................................................................................................. 39 

Screens ........................................................................................................................................................ 39 

Sheets .......................................................................................................................................................... 39 

Operating a Setpoints Sheet ....................................................................................................................... 41 

A Reasons Sheet .......................................................................................................................................... 42 

Alarms ......................................................................................................................................................... 42 

I/O Modules ................................................................................................................................................ 43 

Listed Drawings ........................................................................................................................................... 43 

Clock Set ...................................................................................................................................................... 43 

Battery Low ................................................................................................................................................. 44 

Quick Trends ............................................................................................................................................... 45 

Trends ......................................................................................................................................................... 45 

Log Plotted Data .......................................................................................................................................... 46 

History ......................................................................................................................................................... 48 

Turn-Back-Time ........................................................................................................................................... 49 

Event Logging .............................................................................................................................................. 50 

Report Forms .............................................................................................................................................. 50 

Web View .................................................................................................................................................... 51 

Multiple Models .......................................................................................................................................... 51 

Touchscreen Cleaning ................................................................................................................................. 51 

Development............................................................................................................................................... 51 

Installation .................................................................................................................................................. 51 

Development Basics .................................................................................................................................... 56 

Databases .................................................................................................................................................... 59 

Sessions ................................................................................................................................................... 59 

Drivers ..................................................................................................................................................... 63 

Data Sources ........................................................................................................................................... 65 

Register Blocks ........................................................................................................................................ 67 

Tags ......................................................................................................................................................... 68 

Tag Types ............................................................................................................................................ 68 

Tag Configuration ................................................................................................................................ 69 

Tag Data Formats ................................................................................................................................ 72 



4 | P a g e  
 

Strings ................................................................................................................................................. 74 

Alarms ..................................................................................................................................................... 76 

Calls ......................................................................................................................................................... 79 

Icons ........................................................................................................................................................ 80 

Drawings ................................................................................................................................................. 81 

Screens .................................................................................................................................................... 82 

Sounds ..................................................................................................................................................... 83 

Sheets ...................................................................................................................................................... 85 

Trends ..................................................................................................................................................... 85 

Scripts ...................................................................................................................................................... 86 

Data Logs ................................................................................................................................................. 87 

Ethernet Objects ..................................................................................................................................... 94 

SQL Paths ................................................................................................................................................ 94 

FTP Paths ................................................................................................................................................. 95 

Driver Paths ............................................................................................................................................. 96 

Local and Global Database Views ........................................................................................................... 96 

Creating Graphics ........................................................................................................................................ 97 

Placement Types ..................................................................................................................................... 99 

Address ............................................................................................................................................. 100 

Arc ..................................................................................................................................................... 100 

Bar Graph .......................................................................................................................................... 101 

Checkbox ........................................................................................................................................... 102 

Corner ............................................................................................................................................... 103 

Drawing ............................................................................................................................................. 103 

Ellipse ................................................................................................................................................ 104 

Frame ................................................................................................................................................ 104 

Icon .................................................................................................................................................... 105 

Key ..................................................................................................................................................... 105 

Line .................................................................................................................................................... 106 

Picture ............................................................................................................................................... 107 

Pipe ................................................................................................................................................... 108 

Point Name ....................................................................................................................................... 108 



5 | P a g e  
 

Polygon.............................................................................................................................................. 108 

Rectangle........................................................................................................................................... 109 

Rounded Rectangle ........................................................................................................................... 110 

Spline ................................................................................................................................................. 111 

Tank ................................................................................................................................................... 112 

Text ................................................................................................................................................... 113 

Trend ................................................................................................................................................. 113 

Value ................................................................................................................................................. 114 

Placement Actions ................................................................................................................................ 115 

Alarm Action ..................................................................................................................................... 115 

Call Action ......................................................................................................................................... 115 

Display Action ................................................................................................................................... 115 

Entry Action ....................................................................................................................................... 115 

I/O Jump Action ................................................................................................................................ 115 

Log Jump Action ................................................................................................................................ 115 

Source Comms Action ....................................................................................................................... 115 

Quick Trend Action ............................................................................................................................ 116 

Screen Jump Action ........................................................................................................................... 116 

Sheet Jump Action ............................................................................................................................ 116 

Task Action ........................................................................................................................................ 116 

Trend Jump Action ............................................................................................................................ 116 

Door Action ....................................................................................................................................... 116 

Door Command Action...................................................................................................................... 117 

Developing User Sheets ............................................................................................................................ 117 

Creating I/O Modules ................................................................................................................................ 120 

Developing with Corsair Blocks ................................................................................................................. 120 

The Corsair Select and Replace System .................................................................................................... 122 

Database Record Import and Export ........................................................................................................ 126 

CSV Data Import ........................................................................................................................................ 128 

DXF Import ................................................................................................................................................ 131 

Corsair Micro-CAPs ................................................................................................................................... 134 

Computer Configuration ........................................................................................................................... 136 



6 | P a g e  
 

Model List Group .................................................................................................................................. 137 

Sessions Group ...................................................................................................................................... 139 

Desktop Group ...................................................................................................................................... 139 

Comms Ports Group .............................................................................................................................. 140 

Sounds Group ........................................................................................................................................ 141 

Startup Options Group .......................................................................................................................... 141 

Startup Levels Group............................................................................................................................. 141 

Startup Delays Group ............................................................................................................................ 142 

Reports Printing Group ......................................................................................................................... 142 

Reports Fonts Group ............................................................................................................................. 143 

Reports SQL Group ................................................................................................................................ 143 

Web Group ............................................................................................................................................ 144 

Menus Group ........................................................................................................................................ 145 

Email Group .......................................................................................................................................... 145 

My IP Group .......................................................................................................................................... 146 

Passwords Group .................................................................................................................................. 146 

Users Group .......................................................................................................................................... 146 

Scramble Group .................................................................................................................................... 147 

Style Group ........................................................................................................................................... 148 

MBHR Group ......................................................................................................................................... 148 

Serial Group .......................................................................................................................................... 149 

Help Files Group .................................................................................................................................... 150 

EDS Group ............................................................................................................................................. 151 

Shutdown Group ................................................................................................................................... 152 

Developer Preferences.............................................................................................................................. 152 

Printing the Manual .................................................................................................................................. 154 

The My IP System ...................................................................................................................................... 157 

New Versions via Email ............................................................................................................................. 160 

Using CorsairHMI with Linux ..................................................................................................................... 160 

CorsairHMI System Design ........................................................................................................................ 161 

PLC Addressing .......................................................................................................................................... 161 

Register Monitors ................................................................................................................................. 161 



7 | P a g e  
 

Modbus Family Addressing ................................................................................................................... 162 

Allen-Bradley DF1 Family Addressing ................................................................................................... 164 

Reserved Addresses .............................................................................................................................. 165 

Aux Databases ........................................................................................................................................... 165 

Driver Types .............................................................................................................................................. 166 

ABCLX – Allen-Bradley Logix ................................................................................................................. 166 

ActiveX – ActiveX Control Interface ...................................................................................................... 166 

ANSITERM – ANSI Terminal Text Display .............................................................................................. 166 

ASCII Read – Unsolicited – Serial Port ................................................................................................... 166 

ASCII Write – Triggered Output – Serial Port ........................................................................................ 183 

BACnet – Building Automation and Control ......................................................................................... 183 

 .............................................................................................................................................................. 184 

 .............................................................................................................................................................. 186 

Operation with only reading the present-value property .................................................................... 187 

Operation with reading the present-value and secured-status properties .......................................... 188 

Centurion – Response Technologies Centurion Elite ............................................................................ 189 

DIGIFORT – Digifort VMS ...................................................................................................................... 189 

Digifort Quick Start .......................................................................................................................... 190 

Digifort Driver Documentation ...................................................................................................... 192 

DXI – Harding Instruments DXI Intercom .............................................................................................. 202 

DXL – Harding Instruments DXL Intercom ............................................................................................ 202 

EIP Devices ............................................................................................................................................ 206 

EIP ID – ID Readers ................................................................................................................................ 206 

Email Command .................................................................................................................................... 206 

Ewert CAN – CANbus ............................................................................................................................ 206 

GESRTP – General Electric Series 90 TCP/IP.......................................................................................... 211 

GPS – NMEA Compatible GPS Serial ..................................................................................................... 211 

InterModel – Inter-Model Data Exchange ............................................................................................ 211 

Linux GPIO ............................................................................................................................................. 212 

Linux I2C ................................................................................................................................................ 213 

MBAP – Modbus Ethernet Application Protocol .................................................................................. 217 

MBASC – Modbus ASCII Serial .............................................................................................................. 217 



8 | P a g e  
 

MBEMD – Modbus Ethernet Multi-Drop .............................................................................................. 218 

MBEMDE – Modbus Ethernet Multi-Drop Extended ............................................................................ 218 

MBMM – Modbus Memory Map .......................................................................................................... 218 

MBPUSH – Modbus TCP Push ............................................................................................................... 219 

MBRTU – Modbus RTU Serial ................................................................................................................ 222 

MBTIMING – Modbus Serial Timing ...................................................................................................... 222 

NetScan – Network Scanning ................................................................................................................ 222 

ODB2 – Simplified Vehicle Interface ..................................................................................................... 222 

PCCC CLX – Allen-Bradley DF1 over CIP ................................................................................................ 222 

PCCC SLC – Allen-Bradley DF1 over CIP ................................................................................................ 223 

Pelco Video Switching ........................................................................................................................... 223 

PLC5Enet – Allen-Bradley PLC-5 Ethernet ............................................................................................. 227 

Honeywell Pro-Watch ........................................................................................................................... 227 

S4100 – Simplex 4100 ........................................................................................................................... 235 

Serial Stream – Receiving data from a port .......................................................................................... 236 

Siemens S7 – S7 PLC over Ethernet ...................................................................................................... 237 

SQL – Database Access .......................................................................................................................... 237 

String Match – ASCII Input .................................................................................................................... 238 

Telecor T3 – T3-SC Intercom ................................................................................................................. 242 

VICON – Vicon Video Switching ............................................................................................................ 242 

Placement Tasks ........................................................................................................................................ 243 

Add Value .............................................................................................................................................. 243 

Alarm List .............................................................................................................................................. 243 

Block Monitor........................................................................................................................................ 243 

Block Setup............................................................................................................................................ 243 

Change Operator Levels ........................................................................................................................ 244 

Change Password .................................................................................................................................. 244 

Change PIN ............................................................................................................................................ 244 

Clean Screen.......................................................................................................................................... 244 

Close Window ....................................................................................................................................... 244 

Code Entry Pad ...................................................................................................................................... 244 

Create Note ........................................................................................................................................... 244 



9 | P a g e  
 

CSV File .................................................................................................................................................. 244 

CSV File Directory .................................................................................................................................. 244 

Decrement ............................................................................................................................................ 244 

Do Global Report ................................................................................................................................... 245 

Do Local Report ..................................................................................................................................... 245 

Email Contact List .................................................................................................................................. 245 

Increment .............................................................................................................................................. 245 

Global Report Window.......................................................................................................................... 245 

Local Report Window ............................................................................................................................ 245 

Log Events ............................................................................................................................................. 245 

Log Off ................................................................................................................................................... 245 

Log On ................................................................................................................................................... 245 

Model Selector ...................................................................................................................................... 246 

Monitor Registers ................................................................................................................................. 246 

Name Finder .......................................................................................................................................... 246 

Open File ............................................................................................................................................... 246 

Print Screen - Default Printer ................................................................................................................ 246 

Print Screen – Select Printer ................................................................................................................. 246 

Quick Log Off ......................................................................................................................................... 246 

Save .CAP File ........................................................................................................................................ 246 

Scan Network ........................................................................................................................................ 246 

Screen History View .............................................................................................................................. 246 

See List of Users .................................................................................................................................... 247 

Set Data Source Clocks .......................................................................................................................... 247 

Set Hook Codes ..................................................................................................................................... 247 

Set Value ............................................................................................................................................... 247 

Start Program ........................................................................................................................................ 247 

Stop Program ........................................................................................................................................ 247 

Subtract Value ....................................................................................................................................... 247 

Text File ................................................................................................................................................. 247 

Text File Directory ................................................................................................................................. 247 

Toggle .................................................................................................................................................... 248 



10 | P a g e  
 

Turn Off ................................................................................................................................................. 248 

Turn On ................................................................................................................................................. 248 

View Aux Database ............................................................................................................................... 248 

View CIP Devices ................................................................................................................................... 248 

View Events ........................................................................................................................................... 248 

View History .......................................................................................................................................... 248 

View Global Report Events ................................................................................................................... 248 

View Local Report Events ...................................................................................................................... 248 

Block Reference ........................................................................................................................................ 249 

Standard Blocks ..................................................................................................................................... 250 

Absolute Value .................................................................................................................................. 250 

Adapter Status .................................................................................................................................. 250 

Addition ............................................................................................................................................. 251 

Alarm 1 to 4 ....................................................................................................................................... 252 

Alarm Tag Active ............................................................................................................................... 252 

Array Distributor ............................................................................................................................... 253 

Array Element Selector ..................................................................................................................... 253 

Array Expansion ................................................................................................................................ 254 

Array Fill ............................................................................................................................................ 255 

Array Maximum ................................................................................................................................ 256 

Array Minimum ................................................................................................................................. 256 

Array Totalization .............................................................................................................................. 257 

Aux DB Strings ................................................................................................................................... 258 

BattState ........................................................................................................................................... 258 

Bit Index Collector ............................................................................................................................. 259 

Bit Split .............................................................................................................................................. 259 

Bitwise AND....................................................................................................................................... 260 

Bitwise NOT ....................................................................................................................................... 260 

Bitwise OR ......................................................................................................................................... 261 

Bitwise XOR ....................................................................................................................................... 262 

Bound to Limits ................................................................................................................................. 262 

Comms Status ................................................................................................................................... 264 



11 | P a g e  
 

Control Limits .................................................................................................................................... 264 

Count Bits .......................................................................................................................................... 264 

Counter ............................................................................................................................................. 265 

Daily Average .................................................................................................................................... 265 

Daily Production ................................................................................................................................ 266 

Debounce .......................................................................................................................................... 266 

Descending Transfer ......................................................................................................................... 267 

Division .............................................................................................................................................. 267 

Equal To ............................................................................................................................................. 268 

Falling Trigger .................................................................................................................................... 269 

Fix Strings .......................................................................................................................................... 269 

GPS Areas .......................................................................................................................................... 270 

GPS Destinations ............................................................................................................................... 271 

GPS Markers ...................................................................................................................................... 271 

Greater Than ..................................................................................................................................... 273 

Greater Than or Equal To .................................................................................................................. 274 

Group Calls ........................................................................................................................................ 274 

High Alarm......................................................................................................................................... 275 

HOA Call ............................................................................................................................................ 276 

HOA Position ..................................................................................................................................... 276 

HOA Status ........................................................................................................................................ 277 

Horizontal Tank ................................................................................................................................. 277 

Hourly Production ............................................................................................................................. 278 

Ingredient in Use ............................................................................................................................... 278 

Ingredient Totals ............................................................................................................................... 279 

Initialize ............................................................................................................................................. 280 

Integrate Pulse .................................................................................................................................. 280 

Less Than ........................................................................................................................................... 281 

Less Than or Equal To ........................................................................................................................ 281 

Login Data ......................................................................................................................................... 282 

Login ID ............................................................................................................................................. 283 

Login User ......................................................................................................................................... 283 



12 | P a g e  
 

Logout ............................................................................................................................................... 283 

Lookup Table ..................................................................................................................................... 284 

Low Alarm ......................................................................................................................................... 284 

Maximum .......................................................................................................................................... 285 

Min Max Scaling ................................................................................................................................ 286 

Minimum ........................................................................................................................................... 286 

Moving Bit ......................................................................................................................................... 287 

Multiplication .................................................................................................................................... 287 

MX Plus B .......................................................................................................................................... 288 

Not Equal to ...................................................................................................................................... 289 

Operator Level .................................................................................................................................. 289 

Peak Hold .......................................................................................................................................... 290 

Production Shifts ............................................................................................................................... 291 

Random Value ................................................................................................................................... 291 

Read Clock ......................................................................................................................................... 292 

Rising Trigger ..................................................................................................................................... 293 

Sample Timer .................................................................................................................................... 293 

Save Application File ......................................................................................................................... 294 

Session Index ..................................................................................................................................... 294 

Session Transfer ................................................................................................................................ 295 

Set Bits .............................................................................................................................................. 295 

Sine Wave.......................................................................................................................................... 296 

Sliding Average .................................................................................................................................. 296 

SPC Rules ........................................................................................................................................... 297 

Square Root ....................................................................................................................................... 298 

Step Type Indications ........................................................................................................................ 298 

String Concatenate ............................................................................................................................ 299 

String Copy ........................................................................................................................................ 300 

String Match ...................................................................................................................................... 301 

Subtraction ........................................................................................................................................ 301 

Tank Fill ............................................................................................................................................. 302 

Task Kill.............................................................................................................................................. 303 



13 | P a g e  
 

Timer ................................................................................................................................................. 305 

TOD Schedule .................................................................................................................................... 305 

Transfer Data .................................................................................................................................... 306 

Transfer on Change ........................................................................................................................... 306 

Trigger Alerts ..................................................................................................................................... 307 

Unacknowledged Alarm .................................................................................................................... 308 

Within Limits ..................................................................................................................................... 309 

X/D Plus B .......................................................................................................................................... 310 

Corsair Batching ........................................................................................................................................ 310 

Standard Templates .................................................................................................................................. 311 

Burner Control Templates ......................................................................................................................... 311 

Script Steps ............................................................................................................................................... 312 

ActiveX Get Property ............................................................................................................................. 312 

ActiveX Method .................................................................................................................................... 312 

ActiveX Put Property ............................................................................................................................. 312 

Append to an FTP File ........................................................................................................................... 312 

Delay ..................................................................................................................................................... 312 

Delete a File .......................................................................................................................................... 312 

End Script .............................................................................................................................................. 313 

Event Test .............................................................................................................................................. 313 

Execute Block ........................................................................................................................................ 313 

Goto ...................................................................................................................................................... 313 

Rename a File ........................................................................................................................................ 313 

See if a File Exists .................................................................................................................................. 313 

See if a FTP File Exists ............................................................................................................................ 313 

Send Email ............................................................................................................................................. 313 

Spawn Process ...................................................................................................................................... 313 

System Command ................................................................................................................................. 314 

Upload a File via FTP ............................................................................................................................. 314 

HOA Tags ................................................................................................................................................... 314 

Alarm Forms .............................................................................................................................................. 316 

Battery Low Logic ...................................................................................................................................... 320 



14 | P a g e  
 

Clock Logic ................................................................................................................................................. 320 

Shift Indication Logic ................................................................................................................................. 323 

Email .......................................................................................................................................................... 325 

CorsairHMI Menus .................................................................................................................................... 333 

The Login System ...................................................................................................................................... 340 

MBHR Serial Hosting ................................................................................................................................. 340 

Web Hosting .............................................................................................................................................. 340 

The Event Database .................................................................................................................................. 342 

Report Forms ............................................................................................................................................ 344 

Understanding the Modbus Drivers ......................................................................................................... 345 

Custom Help Documents .......................................................................................................................... 345 

Mobile Equipment Tracking ...................................................................................................................... 345 

Unreliable Data Transfer ........................................................................................................................... 357 

Integration of a value over time ............................................................................................................... 364 

Communications Architectures ................................................................................................................ 368 

CorsairHMI Experts ................................................................................................................................... 368 

Corsair Experts .......................................................................................................................................... 370 

The Data Source Address Tree .................................................................................................................. 370 

Time Zone Monitor ................................................................................................................................... 371 

Database Generation ................................................................................................................................ 371 

The Application Database Error Summary ................................................................................................ 372 

The MBHR Host Monitoring Window ....................................................................................................... 373 

The Communications Architecture Printout ............................................................................................. 373 

The Email Status Window ......................................................................................................................... 374 

The Data Source Diagnostics Window ...................................................................................................... 374 

The HTTP (Web) Host Window ................................................................................................................. 374 

The Sound Monitor Window..................................................................................................................... 375 

Communications Trace ............................................................................................................................. 375 

TCP Expert ................................................................................................................................................. 377 

Ping Scan ............................................................................................................................................... 378 

Bootp ..................................................................................................................................................... 379 

Adapter Summary ................................................................................................................................. 384 



15 | P a g e  
 

Scan Open Ports .................................................................................................................................... 384 

My IP ..................................................................................................................................................... 385 

ASCII Experts ............................................................................................................................................. 386 

The SQL Expert .......................................................................................................................................... 386 

The SQL Clocks Window ............................................................................................................................ 387 

The FTP Expert .......................................................................................................................................... 387 

Task Summary ........................................................................................................................................... 389 

Text File Viewer ......................................................................................................................................... 389 

CSV File Viewer ......................................................................................................................................... 389 

Telnet ........................................................................................................................................................ 390 

Network Scan ............................................................................................................................................ 394 

BACnet Explorer ........................................................................................................................................ 396 

The Door Pseudo-Code Printout ............................................................................................................... 396 

PLC Register Monitoring ........................................................................................................................... 396 

Data Exports .............................................................................................................................................. 396 

Maintenance Windows ............................................................................................................................. 396 

The Tag Data Monitoring Window ............................................................................................................ 397 

The Door Data Monitoring Window ......................................................................................................... 397 

The DXF Expert Window ........................................................................................................................... 398 

The JSON Expert Window ......................................................................................................................... 398 

Protocol Data ............................................................................................................................................ 400 

The Services Expert ................................................................................................................................... 400 

CorsairHMI Corrections ............................................................................................................................. 402 

Introduction .............................................................................................................................................. 403 

Scramble Code Entry ................................................................................................................................. 403 

Hook Codes ............................................................................................................................................... 403 

Video Switching ......................................................................................................................................... 404 

Vicon ..................................................................................................................................................... 404 

Intercom .................................................................................................................................................... 405 

The Telecor T3 Intercom Driver ............................................................................................................ 405 

Duress ....................................................................................................................................................... 411 

Guard Tour ................................................................................................................................................ 411 



16 | P a g e  
 

Access Control ........................................................................................................................................... 411 

Doors ......................................................................................................................................................... 412 

Corsair BACnet Access Control Shims ................................................................................................... 427 

The Corsair CorKey Shim ....................................................................................................................... 430 

CorsairHMI Glossary ................................................................................................................................. 434 

 

Overview 
 

Conventional operator interface programs (Human Machine Interfaces) are used to show industrial 

process information on a computer screen.  They permit an operator to control that process.  

CorsairHMI can act as a conventional operator interface but it is not limited to that role.  It is a 

comprehensive software system for factory integration projects performing tasks that would be difficult 

or impossible with other interfaces. 

Features 
 

Alarming 
 

 

Sounds 
Corsair can play back prerecorded .WAV sound files when an alarm is tripped. These sound can go 

through a plant paging system. 

 

 

Trending 
 

 

Data Logs 
 

 



17 | P a g e  
 

Plotted Data 
 

 

TBT 
 

Email 
Corsair can be configured to send email messages when alarms are tripped, acknowledged, and reset.  If 

these messages are configured with the proper addresses, they can appear as text messages on cell 

phones.   The message can include a browser link back into the Corsair system.  When the cell phone 

user clicks on this link, he can see the interface graphics and the entire alarm summary. 

Corsair includes a system for scheduling what email addresses are used at different times and days. 

 

Event Logging 
The Corsair program can be used to log event records into a database.  Each event record marks what 

type of event occurred, the date and time, and other information.  Possible events include tripping, 

acknowledgement, and reset of alarms and calls, operator changing of values, and other things. 

Event data is kept in a database that comes from a database program.  The database program must be 

purchased separately from the Corsair interface program.  Free versions of some database programs are 

available.  Database programs that are currently supported by Corsair include: 

Microsoft SQL Server 

Microsoft SQL Server – Older versions 

Microsoft SQL Server Express 

MySQL 

The Corsair program communicates with the database program using the SQL database language.  Other 

SQL-compliant databases may work with Corsair but they have not been tested. 

Computer Configurations 

Event logging systems can be configured in several different ways.  The simplest system involves a single 

computer running both the Corsair interface and the SQL database program. 

                                                         Computer   

                    

Corsair 

Database 



18 | P a g e  
 

The operator of this system can use the Corsair software to generate events for the database and to 

view the contents of the database.  He does not have to leave the program to view the history of events. 

Another configuration separates the Corsair program and the database program into separate 

computers that are connected on a network. 

Computer A         Computer B 

                           

This configuration works exactly like the first configuration.  Computer A may be a diskless computer 

with a solid-state drive that is not large enough to contain the database.  Computer B can be an office-

type computer in a secure area. 

 

 

Another configuration has two Corsair nodes with a single database. 

Computer A   Computer B 

 

Both Corsair nodes can generate and view events using the same database. 

A more complex redundant configuration of two computers uses two databases. 

Computer A        Computer B 

 

Computer A writes event records to both its own database and to the database on computer B.  

Computer B writes event records to both its own database and to the database on computer A. 

Larger networked systems can use many Corsair computers. 

Computer C        Computer A 

 

Computer D                Computer B 

 

 

Computer E             

Corsair Database 

Corsair  Corsair 

Database 

Corsair Database 

Corsair Database 

Corsair 

Corsair 

Database 

Corsair 

Database 



19 | P a g e  
 

 

 

Computer F         

 

In this system Corsair computers C through F put event records into the Computer A database.  They can 

optionally also put the records in the computer B database.  Computer A can be onsite for faster access.  

Computer B can be located in an offsite data center and accessed over the Internet. 

Another application could use a local database whose records are periodically transferred to a remote 

computer. 

Computer A Computer B 

       

In this system the Corsair program only writes events into its own database on Computer A.  One time 

per day Computer B copies records from Computer A.  The records are then deleted from Computer A.  

This system may have less total network communications traffic than a system where A hooks into B for 

each event.  If the records on Computer A are erased each day it will not require as much disk space.  It 

may be possible to use a diskless computer with a solid-state drive. 

The Corsair program can be used to view records from either the local (Computer A) or remote 

(Computer B) databases.  The transfer of records from A to B must be done by programming the 

database program.  The Corsair program cannot automatically do this transfer. 

Database Configuration 

The database program typically comes with an administration program – sometimes called a 

Management Console – that is used to create databases and assign users and passwords.  Typically this 

program is used to initially create the database.  The database must then get a table with rows and 

columns.  The number of columns and their names and types are defined by the Corsair program.  These 

requirements can be printed out in the reference section of the Corsair manual.  Column types will vary 

slightly based upon the type of database program that is used.  Column information may be manually 

entered into the database by the database administrator.  Frequently it is easier to let the Corsair 

program do the work.  It contains an SQL Expert program that has the ability to create, delete, view, and 

modify databases, tables, and columns.  It can create a multiple-column table in the exact column 

format that the Corsair program requires for event logging. 

GMT Time Format 

Many event logging systems use a time of day corresponding to the local time zone at the facility.  In 

some circumstances it may be desirable to have the event database store events using GMT (UTC) time.  

Corsair 

Database 
Database 

Corsair 



20 | P a g e  
 

This time standard does not recognize daylight savings time.  The Corsair program has an option to use 

GMT for its event logging.  Database records are written with GMT time.  When the Corsair program 

displays a record, it translates from GMT to the proper local time at the Corsair computer.  It properly 

allows for Daylight Savings Time when it does this.  The operator only sees time using his local time 

zone. 

Computer Clock Synchronization 

Each Corsair computer can be configured to synchronize it’s time-of-day clock with the clock on the SQL 

database computer.  This can be done manually from the operator clicking on a button on the screen or 

automatically at regular intervals.  The SQL computer sends the clock value to the Corsair computer in 

GMT format.  The Corsair computer is set to the proper time for its local time zone. 

Alarm and Call Events 

Each alarm and call that is a part of the Corsair application database can generate as many as six 

different events.  For a standard alarm the events are: 

AlarmTrip 

AlarmAck (Alarm Acknowledge) 

AlarmReset 

AlarmTripCmd (Alarm Trip Command) 

AlarmAckCmd (Alarm Acknowledge Command) 

AlarmResetCmd (Alarm Reset Command) 

The first three events are usually generated by a Corsair computer that is reading the 4-bit alarm status 

out of a PLC.  When it sees a new trip on an alarm it generates the Alarm Trip event.  When it sees that 

the alarm has been acknowledged it generates the Alarm Acknowledge event.  When the alarm is reset 

it generates the Alarm Reset event.  There may be several Corsair computers on a network that are all 

looking at the same PLC alarms.  Only one should be configured to generate Alarm Trip, Ack, and Reset 

events so that multiple records do not appear in the database for the same alarm.  These events report 

on changes in alarm status as read from the PLC.  They do not report if a computer has caused the 

change in status. 

The CMD ‘Command’ versions of the event types are generated when a Corsair computer is used to 

change the status of an alarm.  If the operator acknowledges an alarm his computer generates an 

AlarmAckCmd event at the same time that it commands the PLC to acknowledge the alarm.  The 

AlarmAck event will be generated as soon as the PLC shows the new acknowledged status. 

Typically, only one Corsair computer of a multiple-computer system is configured to generate AlarmTrip, 

Ack, and Reset events.  All computers are configured to generate AlarmTripCmd, AlarmAckCmd, and 



21 | P a g e  
 

AlarmResetCmd events.  These six event types are used with alarms of the ‘Standard’ category.  Alarms 

of other categories can generate different event type labels for these events.  They might not generate 

all 6 types of events.  For example, and alarm of the ‘Notice’ category only has one type of event.  When 

the computer sees that the alarm is tripped in the PLC it sends a ‘Notice’ event instead of an ‘AlarmTrip’ 

event.  It will not send any of the other 5 events. 

A ‘Custom’ category is available that allows the developer to enter any event type label that he desires 

for each of the six types of alarm and call events.  If he leaves a label blank the event is not generated. 

Test Events 

A ‘Test’ event type is used to verify the connection between the Corsair software and the database 

software.  Test event may be generated by the operators clicking on a button on the event monitoring 

window.  They may also be generated from a Corsair script command.  This can be done at a regular 

time interval to verify that the connection is still working. 

 

Corrections 
 

 

Architectures 
Hardware architectures are methods of wiring together industrial control equipment in more complex 

systems.  Software architectures are methods of communicating data between machines and operators.  

Corsair allows a lot of flexibility in implementing different architectures. 

MBHR 
The MBHR ‘Modbus Host-Remote’ system is a standard feature with multiple-computer versions of the 

Corsair program. It is used when a large number of computers need to access PLC data at the same time. 

In small systems each Corsair computer can directly access PLCs over an Ethernet network. 

 

 

 

 

 

 
PLC PLC 

Corsair Corsair 



22 | P a g e  
 

 

 

 

Problems occur as additional Corsair computers are added to the network. Each PLC supports a fixed 

maximum number of simultaneous network connections. 5 computers would require 5 connections on 

each PLC. Peer-to-peer communications between PLCs will use additional connections. When the 

number of Corsair computers exceeds the available connection count the system will not function 

properly. Large numbers of computers will also tie up PLC processor time servicing communications 

requests. 

Many companies have separate networks for PLC control and for office (‘MIS’) use. The 

networks should not be cross connected for security reasons and to avoid performance (and political) 

problems. Running two network cables to each computer is not practical. The answer is the MBHR 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two Corsair computers are hooked to both networks. They communicate with the PLCs using any of the 

available Corsair communications drivers. They can both act as fully functional operator interface nodes 

with the ability to read and write PLC data. They can support the specialized Corsair monitoring 

PLC PLC PLC PLC PLC 

Primary 

Corsair MB 

Host 

Back up 

Corsair MB 

Host 

Corsair MB 

Remote 

Corsair MB 

Remote 

Corsair MB 

Remote 

Corsair MB 

Remote 



23 | P a g e  
 

functions for the PLC time of day clock, the battery status, and register values. These computers are 

configured to act as MB Hosts. 

Each of the office computers runs a copy of the Corsair software that has been configured to act as an 

MB Remote. They interact with the Corsair Hosts instead of with the PLCs. Each Host can handle up to 

100 Remote connections simultaneously. 

The MB Remote computers can read data from the PLCs through the host computers. They can view 

historical logs of data. They can turn-back the time on graphic screens. They cannot change PLC data and 

they do not have the specialized Corsair monitoring functions. 

All of the computers in the system – both Host and Remote – use the same Corsair application file. 

Each Remote computer is assigned two host computers. The Remote will attempt to its primary host 

first. If that attempt fails it will attempt to connect to its backup host.  

Corsair Log data files can be kept on each of the Host computers. They need to run continuously. 

Remote computers can access historical log information from the hosts without logging on their own 

hard drives. 

 

Plantwide Interface 
Plantwide Interface is a CorsairHMI development technique that is used in manufacturing or 

correctional facilities where there are multiple control systems operated from several places.  Each place 

has a Corsair computer.  Every area can see the interface data from every other area, but it can only 

operate the things that it is responsible for.  The A Building operator can see all the graphics from B 

building but he cannot control it.  He can only control the A building.  The B building operator can see 

the A building, but he cannot control it.  The office can see both the A and B buildings but cannot control 

either. 

The Corsair difference is that it can use the same model file on every Corsair computer in the plantwide 

interface system.  This file contains information as to what can be seen and operated on each computer.  

Each computer contains a small computer properties file that tells it what identity it is supposed to 

assume.  In emergencies when a computer is down provision can be made to easily change the 

operating capabilities of another computer so that production can continue. 

Plantwide interface can actually be less expensive than conventional interface architectures where 

separate interface databases are used for each computer.  When a system is added to the model file it is 

copied to each of the computers so that they have the new capabilities.  This development work only 

has to be done once instead of multiple times for each separate database.   MBHR remotes use the 

same model database file as the operating computers do. 



24 | P a g e  
 

Multiple Models 
The hard drive on a Corsair interface computer holds a file that the program uses.  This ‘model’ file holds 

tags, interface screens and sheets, alarm information, and other things that are specific to the 

customer’s installation.  It is possible for a single Corsair program to use up to 100 Model files at the 

same time.  The operator switches between them to see different views. 

Enterprise Interface 
Enterprise interface uses a combination of multiple models and MBHR technology.  Suppose that a 

company has headquarters in St. Louis and plants in Chicago, Cleveland, and Toronto.  Each plant uses 

pantwide interface with monitoring in its local office.  Those offices are linked through the internet with 

the S. Louis headquarters.   Each Corsair computer in the headquarters is using 4 model files – one for 

each of the plants and one for company-wide summary data.  The summary model uses a special driver 

to read data from the other models.  It then totalizes the information and flags out of range values.  One 

headquarters computer provides a secure web view over the internet using a VLAN.  Any employee with 

the VLAN credentials can view the interface information at home or on a portable device. 

Web 
The Corsair program can serve out dynamic web pages to any computer or mobile device with a 

browser.  The operator can monitor the system.  It can be configured so that he can make changes from 

the browser.  Browsers must be HTML-5 compatible.  There is no ‘app’ that has to be downloaded.  

Browsers do not need Flash or Silverlight. 

 

Serial Terminal 
Years before the Web computer systems used serial terminals to display text information.  This was 

typically in 24 or 25 rows of 80 columns each.  The letters on the screen could be underlined, shown in 

inverse, and flash.  Many terminals were built to a software standard called VT-100 or ANSI.  Some 

computers have software that can emulate ANSI –compatible serial terminals. 

Corsair has the capability to display text data on ANSI serial terminals.  This is a one-way flow of 

information.  Keystrokes from the terminal’s keyboard are ignored. 

A possible use for this feature in a jail is to display inmate count information for meals in the kitchen.  

The Corsair computer is in a secure area but inmates have access to the kitchen.  The one-way serial 

connection provides a way for the inmates to see the data without compromising the security of the 

control system.  The Ethernet control network does not extend into inmate areas. 

The CorsairHMI software can be used in a special mode where it does emulation of an ANSI terminal if 

that is needed for these applications. 



25 | P a g e  
 

Licensing 
Every CorsairHMI program comes with a license file.  The license file is used by the program to 

determine what it can and cannot do.  It determines the development capabilities, the maximum 

number of screens, and several other options.  The CorsairHMI website has a Terms of Sale document 

that lists and prices various standard combinations of license features.  These combinations are named 

with letters. 

Corsair has two options for temporary licenses.  The first is a license that expires at a certain date.  It can 

be used until that time and then it expires.  The second option is a limited run time license.  It has a 

maximum amount of time that the interface can run before it shuts off.  It can then be restarted for 

another time period.  There is no limit as to the total run time with this license. 

A 4-hour limited run time license may be available at no cost from CorsairHMI for evaluation, 

development, training, and testing purposes.  License files are not copy protected.  Corsair users are 

trusted to stay within the limits of their licenses. 

Strategic Fit 
The CorsairHMI program can be an important part of a system integration firm’s business plan when 

used in ways that utilize its unique capabilities.  Other programs can be used to do most of what it does 

but at a greatly increased cost and complexity. 

Corsair has some very specific requirements for how some elements of a PLC program are configured.   

If there is an existing PLC and an HMI operating a system, it is almost certain that some changes will 

have to be made to the PLC program to accommodate a retrofit to CorsairHMI. 

There are no annual fees for a Corsair integrator to maintain its status.  Training and phone support are 

available through CorsairHMI. 

 

Linux 
CorsairHMI was originally developed as a Windows program.  A Linux version of it is also available.  

Model files developed using one operating system can be copied to the other and used with few, if any, 

changes.  Most Corsair features will work with either system.  Corsair Linux uses GTK graphics. 

Linux is not recommended for most installations because it is not compatible with many of the 

computers that are found in industry.  There are situations where it may be a good choice. 

The first reason for Linux is to save money in a high-volume application.  Linux is generally free. 

The second reason for Linux is for stability over several installations with a long-term deployment.  A 

Linux version can be tested now and the same operating system installed 10 years from now.  Windows 

versions tend to be much more volatile. 



26 | P a g e  
 

The third reason for Linux may be a customer requirement.  Some data centers may require Linux. 

The fourth reason for Linux may be an opinion that the operating system is more stable.  Stability is a 

subjective matter.  CorsairHMI gives integrators a choice. 

Corsair is also available in a Linux version that can run on inexpensive ARM processors. 

Education 
Traditional electronics classes were frequently focused on understanding and repairing 
television sets. TV repair was a common occupation, but the curriculum selection went 
beyond that. Television sets contained examples of most of the types of electronic 
systems that were used at the time. They contained oscillators, rf and audio amplifiers, 
high and low voltage power supplies, and so on. Understanding television provided a 
student with a background that would prepare him to go into a wide variety of electronic 
work. 
 
Curriculums that teach industrial computing need a software equivalent to the television 
set. They need to teach something that is practical yet covers a broad spectrum of topics. 
Modern operator interface software can fill this need. It provides a method for the 
student to learn about the following topics: 
 
1. Computer graphics 
2. Data communications using different protocols over Ethernet and serial links 
3. Real-time data logging and viewing of historical information 
4. Math functions including scaling, interpolation and statistics 
5. Computer programming concepts including arrays, logic, program flow, data type 
conversion, and so on 
6. Data exchange between programs using the clipboard, CSV files, and other 
methods 
 
Operator interface software fills a similar role to the television set in that it gives the 
student an introduction to a wide variety of topics in industrial computing. He can then 
go on in any of them as his needs and interests are further defined. 
 
CORSAIR SOFTWARE IN THE CLASSROOM 
Classroom software has some unique requirements that are not readily found in 
commercial products. Most of this is centered on the need for the student to learn the 
principles as much as possible and to spend as little time as possible learning the 
software. Software that is difficult to use wastes classroom resources and does not 
accomplish educational objectives. 
 
INSTALLATION ISSUES 
Corsair software is not copy protected. It does not make any changes to the Windows 
registry so there is no “install” and “remove” for the program. It is simply copied to a 
folder, and a shortcut is created to point to it. When the folder and shortcut are deleted 
the software is completely gone from the computer. 
 
The Corsair program itself is a single executable file. It includes all communications 



27 | P a g e  
 

drivers and function blocks. This is a sharp contrast to most programs that require 
hundreds of files and complete install and remove procedures. 
 
DEVELOPMENT AND RUN-TIME ENVIRONMENTS 
Corsair has its database development and run-time built into the same program. The 
student does not have to move from one program to another. Simple keystrokes are used 
to transfer instantly between development and run-time. Development error checking 
goes on continuously in the background during interface operation. 
 
Corsair includes historical data logging and viewing as a part of the program, not as a 
separate program. 
 
MODBUS PROTOCOL 
Corsair contains several drivers that use the industry-standard Modbus protocol. The 
Corsair communications trace function lets the student view the contents of data packets 
coming to and from the Corsair computer. This is a tremendous aid to understanding this 
popular protocol. 
 
TCP/IP EXPERT 
Corsair’s TCP expert functions enable a student to examine the network that his 
computer is hooked to. He can ping, resolve names to IP addresses and addresses to 
names, scan the network, and do other things. All this is done within the Corsair program 
using the Corsair database. 
 
MBHR PLC SIMULATION 
A computer running Corsair can act as a simulated PLC. Several other Corsair 
computers can read and write data from it. This prevents the instructor from having to 
have separate PLC hardware and programming software. 

Future Directions 
 

Distributed Hosting 
 

The CorsairHMI program includes a Modbus Host-Remote (MBHR) system that is useful when 

implementing large systems.  It can use standard Modbus TCP protocol to communicate between 

Corsair computers over an Ethernet network.  It can also use a nonstandard extended version of the 

protocol to achieve much higher performance than what is possible with tag-based communications. 

MBHR is a valuable tool for Plantwide Interface systems where every computer can see what is 

happening everywhere.  Each computer can only control what it is allowed to control.  Each computer 

contains an identical copy of the Corsair application database. 

Here is a simple system with no MBHR. 



28 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

Each HMI talks to each of the 3 PLCs.  Each PLC has to support 3 communications connections through 

the Ethernet network.  The Corsair Authority and Operator Log-in systems determine what each 

computer can control. 

  

HMI A 

PLC A 

HMI B 

PLC B 

HMI C 

PLC C 



29 | P a g e  
 

 

The network can be expanded with MBHR single-point hosting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case 4 office computers need to see the interface data.  They could be on the same network as 

the PLCs but it is usually desirable that they are on a separate network.  If they all talked directly to the 

PLCs each PLC would have to support 7 communications connections.  As the number of office 

computers increased the PLCs would be slowed down.  Most PLCs have a fixed maximum number of 

connections that they can support at one time.  If this limit is exceeded communications failures will 

occur. 

HMI A 

PLC A 

HMI B 

PLC B 

HMI C 

PLC C 

HOST 

 

 

 

OFFICE 1 

 

 
OFFICE 2 

 

 
OFFICE 3 

 

 OFFICE 4 

 

 



30 | P a g e  
 

This system uses an extra computer that has been added to act as a single-point MBHR host.  It reads 

data from the PLCs and the office computers read data from it.  The PLCs have to service 4 

communications connections instead of 7.  All 8 Corsair computers in the system use the same 

application database file.  There could be as many as 100 computers in the office with no increase in PLC 

communications.  

In this system each plant computer operates as a normal interface.  The host computer operates as a 

normal interface with MBHR Host operation also running.  Each office computer operates as an MBHR 

Remote. 

Single-point hosting like this works very well when there are a large number of office computers on a 

separate network.  The host computer is the only computer that is on both networks.  If the host 

computer fails the office computers cannot see the interface data but the plant computers will still run. 

Systems with a large number of computers in the plant can overtax PLCs with communications from 

them even before office computers are added.  It would be possible to have a single Host computer 

serve out data to every computer in the plant.    This would make it so there is only one communications 

connection to each PLC.  The problem here is reliability.  If the host computer fails every computer in the 

plant fails.  There may be speed problems with all communications running through a single host. 

Many times the ideal is for HMI A to talk to PLC A directly, for B to talk to B directly, and so on.  Each 

area can continue to run when communications fail from other areas.  Plantwide Interface requires that 

HMI A sees the data from PLC B but this path may not be critical for operations.  This can be 

accomplished with MBHR distributed hosting.  HMI A would host MBHR communications so that HMI B, 

HMI C, and the office Host computer can see PLC A.  HMI B would host MBHR communications so that 

HMI A, HMI C, and the office Host computer can see PLC B.  Now each PLC only has to support 1 

communications connection and operating reliability requirements are met. 

  



31 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This system uses single-point hosting for the office computers and distributed hosting out in the plant. 

 

Streaming Serial 
An engineer working at a nuclear power plant may desire to see interface data at home.  There is a 

concern over security when the plant control system is hooked to the Internet.  Most security systems 

are software based.  They use two-way Ethernet data communication.  This is true even of ‘one-way’ 

secure routers. 

HMI A 

A Host 

PLC A 

HMI B 

B Host 

PLC B 

HMI C 

C Host 
PLC C 

Office 

Host 

 

 

 

OFFICE 1 

 

 
OFFICE 2 

 

 
OFFICE 3 

 

 OFFICE 4 

 

 



32 | P a g e  
 

Streaming serial is different.  It uses two Corsair computers hooked together with RS-232 serial 

communication.  The key is that the communication is only connected in one direction.  The plant-side 

computer sends data to the Internet-side computer.  There is no physical connection in the other 

direction.  There may be a fiber-optic link inserted between the two computers to guarantee electrical 

isolation. 

Someone may ‘hack’ into the browser view on the Internet-side computer but there is absolutely no way 

that they can disrupt the operation of the plant through the streaming serial link.  Because this is 

hardware-based security there is no software that needs to be updated as new security problems are 

discovered. 

 

 

 

Comparison of Corsair Viewing Options 
The Corsair program offers several options for how interface and history data can be viewed.  This 

document is to summarize what features are available with these options.  There are variations 

depending on where data is stored so system architecture must be reviewed before features are 

guaranteed. 

A list of available options: 

Option:  Direct Local view of the Corsair Computer 

This situation is when the operator is located at the Corsair computer.  He can do anything that the 

Corsair program is capable of. 

Advantages:  Security if the computer is locked in a secure area.  Corsair password login is also available. 

Disadvantages:  No remote view.  You have to be there. 

Option:  Remote operation of the Corsair Computer 

This situation is when the operator is located at the Corsair computer.  He can do anything that the 

Corsair program is capable of. 

Advantages:  Security if the computer is locked in a secure area. 

Disadvantages:  Does not work well at the same time that someone is using the computer directly.  The 

two operators may want to look at different screens and do different things.   There is a danger of the 

remote operator accidently shutting down the Corsair software when he shuts down the remote 

operation. 



33 | P a g e  
 

Option:  Using the Corsair Computer as a Web host 

The Corsair computer sends HTML pages to a web browser.  This can be over a local area network or 

over the Internet. 

Advantages:  Remote views anywhere with no special software or ‘app’ needed.  No interference with 

the local operator. 

Disadvantages:  Some limits in capabilities.  The browser must be HTML-5 compatible.   

Option:  Using the Corsair Computer to host MBHR Remotes 

The Corsair computer feeds data to remote computers that are running the Corsair software.  This can 

be over a local area network or over the Internet. 

Advantages:  Remote views anywhere the software is installed with almost as much capability as the 

local computer.  No interference with the local operator. Speed is generally excellent. 

Disadvantages:  Usually each remote computer has a copy of the Corsair application database.  

Whenever it is updated on the Master (Host) the updates must be copied to each of the remotes. 

Option:  Using the Corsair Computer to drive ANSI Text Terminals 

The Corsair computer sends text (not graphic) data to one or more text terminals through a serial line. 

Advantages:  Extremely secure as the serial line from the terminal to the Corsair computer can be left 

unhooked.  Secure enough for inmate areas at a corrections facility. 

Disadvantages:  Data is limited to up to 25 lines of 80 characters each.  Update speeds are relatively 

slow. 

Option:  Sending data to other software 

The Corsair computer sends data to another program or programs in the form of .csv text files, SQL 

database records, binary files, or other forms.  This may involve FTP or HTTP-based data transfer. 

Advantages:  No interference with the local operator.  Takes advantage of capabilities in the other 

software that Corsair does not have. 

Disadvantages:  Requires special integration work with the other software.  This may be extensive and 

experiments may have to be done to see what works before contracting for a project. 

Comparing the options: 

Remote Software Requirements 

Direct View:  No remote software. 



34 | P a g e  
 

Remote Operation:  Remote control software must be bought and installed on both the Corsair 

computer and on the remote computer. 

Corsair Web Host: No special remote software.  The remote must use an HTML-5 compatible Web 

browser. 

MBHR Remotes:  Each remote computer must have Corsair MBHR remote software installed on it along 

with a copy of the Corsair application file. 

ANSI Text Terminals:  Terminals can be computers running terminal emulation software.  It is 

recommended that the Corsair program be used in a terminal emulation mode for this function as it has 

some specialized advantages over programs like Hyperterm. 

Sending data to other software:  The other software must be purchased and configured. 

Remote View Counts 

Direct View:  Zero. 

Remote Operation:  There can be many remote locations but only one can be used at a time. 

Corsair Web Host:  Limits may be set by the Corsair computers operating system.  No more than 400 at 

one time. 

MBHR Remotes:  A maximum of 100 remote nodes can hook into one host at a time.  Many more 

remotes are possible with MBHR cascading. 

ANSI Text Terminals:  Several terminals can be multidropped on a serial communication link.  They will 

all see the same thing. 

Sending data to other software:  Counts are dependent on the other software. 

Operator Control Capability 

Direct View:  Yes. 

Remote Operation:  Yes. 

Corsair Web Host:  Some control capability if it is enabled. 

MBHR Remotes:  Some control capability if it is enabled. 

ANSI Text Terminals:  No control. View only. 

Sending data to other software:  Generally no control capability but there are some possibilities. 

Corsair Application Development Capability 



35 | P a g e  
 

Direct View:  Yes. 

Remote Operation:  Yes. 

Corsair Web Host:  Very limited but expanding. 

MBHR Remotes:  None and none planned. 

ANSI Text Terminals:  None. 

Sending data to other software:  None. 

Trending Capability 

Direct View:  Yes.  Shows the value at the cursor position. 

Remote Operation:  Yes. 

Corsair Web Host:  Limited trend viewing. 

MBHR Remotes: Trends start to fill when the remote is started. 

ANSI Text Terminals:  None. 

Sending data to other software:  The software may have the ability to create trends. 

Security 

Direct View:  Can be passworded.  Lock the door to the control room. 

Remote Operation:  Determined by the remote software. 

Corsair Web Host:  Can be passworded but the password currently  is not HTTPS.  VPN security is 

recommended if this is not adequate. 

MBHR Remotes: No password security unless it is implemented as part of a VPN scheme.  Adjustable 

levels of IP or computer name matching. 

ANSI Text Terminals:  Perfect security.  There is no connection that can do anything. 

Sending data to other software:  Depends on the other software. 

CSV Review Capability 

Direct View:  Yes.  Both graphing and Turn-Back Time (graphic screen history). 

Remote Operation:  Yes.  Like the direct view 

Corsair Web Host:  Not yet. 



36 | P a g e  
 

MBHR Remotes: Depends on configuration. 

ANSI Text Terminals:  None. 

Sending data to other software:  The software may have the ability to review data. 

SQL Event Record Review and Report Generation 

Direct View:  Yes.   Large reports may slow down the CPU to an unacceptable amount for other tasks. 

Remote Operation:  Yes.  Like the direct view 

Corsair Web Host:  Not currently planned. 

MBHR Remotes: Depends on configuration.  If a remote can get to the data it is a preferred way to 

generate large reports. 

ANSI Text Terminals:  None. 

Sending data to other software:  The software may have the ability to review SQL data. 

Diagnostics 

This includes communications trace, PLC battery low monitoring, PLC clock set, PLC register monitoring, 

and most of the Corsair ‘experts’. 

Direct View:  Everything that Corsair offers. 

Remote Operation:  Everything that Corsair offers. 

Corsair Web Host:  Very limited but features are being added. 

MBHR Remotes: Generally none. 

ANSI Text Terminals:  None. 

Sending data to other software:  Generally does not apply. 

System Status Windows 

This includes windows that show the status of the various Corsair functions.  It includes the about 

window, memory summaries, and so on. 

Direct View:  Everything that Corsair offers. 

Remote Operation:  Everything that Corsair offers. 

Corsair Web Host:  Good support already with features being added.  Should eventually be almost 

complete. 



37 | P a g e  
 

MBHR Remotes: Generally none. 

ANSI Text Terminals:  None. 

Sending data to other software:  Generally does not apply. 

Printing Capability 

Direct View:  Extensive.  Many printouts have selectable color or black and white and portrait or 

landscape. 

Remote Operation:  Depends on the remote control software. 

Corsair Web Host:  Defined by the web browser.  Usually limited to screen dumps. 

MBHR Remotes:  Many of the same printouts as available from the direct view. 

ANSI Text Terminals:  No printing. 

Sending data to other software:  Determined by the other software. 

Viewing Listed Drawings 

Direct View:  Yes. With printing. 

Remote Operation: Yes, with printing depending on the remote control software. 

Corsair Web Host: Soon. 

MBHR Remotes:   Yes.  With printing. 

ANSI Text Terminals:  No. 

Sending data to other software:  No. 

Remote Update Speed 

Direct View:  Fastest. 

Remote Operation:  Depends on the remote control software. 

Corsair Web Host:  Moderate speed, largely dependent on the Internet connection. 

MBHR Remotes:  Fast.  With smaller systems screen update speeds can be close to those at the local 

direct view. 

ANSI Text Terminals:  Slow. 

Sending data to other software:  Determined by the other software. 



38 | P a g e  
 

Future Direction 

Streaming Serial will become available. 

Architectures must be reviewed if the system involves IP video cameras or intercoms. 

It is anticipated that the Web interface will be greatly enhanced with more and more capabilities that 

are now only available on the local view.  As this happens more projects will use Web clients where they 

need MBHR remotes now.  MBHR will never go away as some of its capabilities will never be available 

on the web. 

  



39 | P a g e  
 

Operating the Corsair Interface 
CorsairHMI software is a powerful interface program that can be used in many different types of 

industries.  Each Corsair program must be developed to meet the needs of a user.  Because of that 

everyone’s Corsair program looks and operates differently.  This manual is to show features of the 

program that are general to most situations 

Screens 
Some keystrokes are available to anyone viewing a graphic screen or a Corsair computer. 

The ‘A’ then opens the alarm summary window. This is the same as clicking on the center sections of the 

status bar on the bottom of some screens.  

The ‘M’ then opens a maintenance window that shows configuration data for a placement. When it is 

pressed Corsair checks to see what item is closest to the cursor to decide what to show.  

The space bar is used for alarm and call screen changes. When it is pressed Corsair looks for a graphic 

placement that shows a tripped alarm. It first looks on the currently displayed screen. If it cannot find 

one there it looks on other screens. The screen is changed if needed and the cursor looks to the alarm 

placement.  

Control-P is used to start printing on the screen. 

Control-Q is used to display quick trends of tag data. The operata moves the cursor near a value and 

then presses the key to see the trend. 

Control-T is used to operate Corsair Turn_Back_Time (TBT) feature. 

Sheets 
Sheets are Corsair windows that show data in positions called ‘cells’. Cells are arranged in rows that go 

across the computer screen and columns that go up and down.  One cell is shown in a different color 

than the others.  This is the ‘current cell’.  The current cell may be changed with the arrow keys or by 

clicking on another cell.  The sheet can scroll horizontally or vertically to see cells that are beyond the 

edge of the window. 



40 | P a g e  
 

 

Some cells of a sheet are editable.  If the current cell is editable the ‘F2’ key will open the window that 

edits the value.  The same thing can be accomplished by a second click on the current cell. 

The operator can select a range of cells on a sheet.   He moves to the upper left cell of the desired range 

and presses the ‘.’ key.  Then he arrows down and right to get the rest of the range. 

 

Range selection is one option for printing.  Control + P opens the sheet printing window. 

 



41 | P a g e  
 

The first option is to print the entire sheet.  The second option is to print the range of selected cells.  

The third option is to print all the rows of the sheet that have data.  When the computer gets to a blank 

row when all the other rows below it are blank it stops printing. 

A similar sheet operation works with the ‘File’ ‘To Clipboard’ menu option. 

 

This operation puts the data into the Windows clipboard in a way that is compatible with commercial 

spreadsheet programs. 

A similar operation is available to export sheet data to a CSV delimited test file that can be used by other 

programs. 

Operating a Setpoints Sheet 
Most PLC projects have variable setpoint data stored in the PLC.  These may be high temperature alarm 

thresholds in degrees or process water target flows in gallons per minute.  A large system may have 

hundreds of setpoint values.  Conventional interfaces may have these setpoints scattered around on 

various operator screens near the equipment that they are working with.   CorsairHMI can do this but it 

offers an additional option.  All the setpoints can be collected together at one place on a sheet.  This 

sheet can be printed for a record of what the setpoints are at some point in time.  If the values are 

accidently changed the operator can go to one place in the Corsair program to type in all of them. 

The PLC programmer usually is responsible to make sure that the operator does not enter setpoint 

values that are out of allowable ranges.  A high temperature alarm should not be set so high that it is 

disabled.  The PLC programmer may write logic that bounds setpoints to values that he is comfortable 

with.  That way the operator cannot compromise the system.  A Setpoints sheet typically has a Value, a 

Minimum and a Maximum column.  The PLC programmer locks values into the Minimums and 

Maximums.  The operator enters the Value column.  An entry that is out of the limits is corrected by the 

PLC logic.  The operator can see the allowable range. 



42 | P a g e  
 

 

The left-side ‘Register’ field is a PLC address.  It is there to assist the programmer. 

A Reasons Sheet 
It is common for a piece of equipment to have several interlocking conditions that must be made before 

it can start.  There may be downstream equipment or safety considerations or temperature alarms.  It 

may not be obvious to an operator what the ‘reason’ is that a motor will not start.  The person that did 

the PLC programming can look at the programming software on a computer screen and find the reason.  

This takes time.  Frequently the reason is something as simple as a disconnect that was left off or a 

tripped pull cord safety.  

One option with Corsair is to develop a ‘Reasons’ sheet for each motor.  It shows a list of reasons on the 

left side of the sheet.  The right side of each row of the sheet says ‘Ready’ or is blank.  If it is not ready 

that reason needs to be investigated. 

Frequently the way that things are wired means that one condition can change more than one reason.  If 

the power is shut off on a conveyor safety devices on that conveyor may not be ready.  Proper design 

practice is to have the most significant reasons closer to the top of the sheet.  The most efficient method 

is for the operator to investigate the reasons in top to bottom order. 

The goal of reasons sheets is to enable the operator to rectify some situations without calling 

maintenance and to have some information available if he has to call maintenance.  The extra time that 

is needed to implement reasons sheets is more than saved over the lifetime of a control system. 

Alarms 
 

Stuff about alarming 



43 | P a g e  
 

I/O Modules 
 

Stuff about I/O modules 

Listed Drawings 
 

Stuff about listed drawings 

 

Clock Set 
PLCs may have built-in time-of-day clocks.  These clocks are used to summarize production data based 

upon time of day or to schedule changes in lighting.  CorsairHMI contains a section that can be used to 

set these clocks.  Typically this has to be done twice a year when daylight savings time changes.  It may 

have to be done more often if the PLC clocks do not keep accurate time. 

The ‘Tools’ ‘Data Source’ ‘Clock Set’ menu option opens the clock set window. 

 



44 | P a g e  
 

This window shows all the PLCs that have clocks that are recognized by Corsair.  The operator can arrow 

up and down through the list.  The title bar shows how many clocks there are and how many are 

‘matched’.  A matched clock has a time value within 5 seconds of the clock on the Corsair interface 

computer. 

Most computer clocks will automatically adjust when daylight savings begins and ends.  The current 

value of the computer clock is shown on the lower left side of the window.  There is a ‘Match All’ button 

on the bottom of the window.  When it is activated Corsair sets the clocks on all the PLCs to match the 

computer clock. Typically this is all that needs to be done twice a year. 

The ‘Set’ button next to each clock opens the individual PLC clock set window. 

 

The Source column shows the current clock values coming from the PLC.  The Computer column shows 

the values coming from the Corsair computer.  This enables the operator to set individual clock items or 

to match just that PLC without matching the others.  He enters a number into the ‘Set’ column and then 

clicks on the corresponding ‘Set’ button. 

Battery Low 
 



45 | P a g e  
 

Quick Trends 
Quick trends are one way for the operator to view a plot of a data value versus time.  An operator can 

view a quick trend plot of any number on a graphic screen by placing the cursor next to it and pressing 

Control-Q on the keyboard. 

 

The quick trend plot starts out empty.  Corsair starts building up the data and the plot works its way 

across the window as soon as it is opened.  The data is lost when the window is closed.  The scale that is 

used for the plot is determined automatically from the data. 

The first two sections of the status bar show the minimum and maximum values since the window was 

opened.  The third section of the bar shows the value of the tag at the time of the cursor position.  The 

fourth section of the bar shows the time of the cursor position. 

The ‘View’ menu item presents selection options for the time width of the quick trend window.  The 

‘View’ ‘Details’ menu  item displays some information about the plotted data. 

Trends 
Trends are plots of the data values of one or more tags over time.  Trend data starts to build up when 

the Corsair program starts running.  It is lost when the program quits running or the computer loses 

power. 



46 | P a g e  
 

 

A trend can have plotted traces from multiple tags.  All of the traces use the same minimum and 

maximum scaling. 

The name of one tag is shown on the left side of the bottom status bar.  If the mouse cursor is moved 

over that plot trace the value at that time appears on the right side of the status bar.  The page up and 

down keys can change which tag is shown at the bottom. 

The time corresponding to the cursor position appears in the center of the window under the plot 

region. 

Control-P can be used to start a print of the trend. 

Log Plotted Data 
Data that is stored in a log file can be plotted versus time on the computer screen.  The first step may be 

to click on the ‘Data Logs’ button on the Corsair desktop window. 



47 | P a g e  
 

 

A window is opened for the plot display.  Log data is saved in a disk file so it is not lost when the 

computer power is off. 

 

The tags whose values are saved in the data log are listed on the bottom of the window.  Each tag has a 

maximum and minimum scale value.  The tag with highlighted data is the ‘current tag’.  Its scale is the 

one shown on the left side of the graph area.  The current tag can be changed by arrowing up or down. 

Plotted log data is different than a trend plot because each tag is plotted to its own scale. 

The first step is for the operator to specify a time interval.  There is a selector on the top of the window 

that can select a time interval.  It can range from ‘Last Hour’ to ‘Last Month’.  The two radio buttons to 

the left of this selector are used to pick if it is used or if custom ‘From’ and ‘To’ times are entered.  

Once the desired time interval is set up the operator can click on the ‘Refresh’ button to see any 

available plot data for the time interval. 



48 | P a g e  
 

The system defaults to two X time cursor lines, one red and one blue.  They can be moved by putting the 

mouse cursor arrow over the cursor line, pressing the left mouse button down, and moving the cursor.  

Releasing the button drops the cursor line at the new position.  At the top of the graph the time 

corresponding to each cursor line position is shown.  The red cursor’s time is shown in red text.  In the 

center of the window the time difference between the two cursors is shown. 

The values of the current tag at each cursor line time are also shown.  The difference between the 

values at the cursor lines is shown in the center. 

If the operator sees a disturbance at some section of a trace he can place the X cursor lines on either 

side of it and pick the ‘Times’ ‘Set to X Cursors’ menu option.  It changes the plots ‘From’ and ‘To’ times 

to magnify the disturbance. 

If a tag has been set up to integrate over time Corsair can integrate the value between the two cursor 

times.  This data is in the table on the bottom of the window.  If the tag is a flow in gallons per minute 

the integrated total is in gallons. 

Y value cursor lines can be enabled.  They can be adjusted up and down to see two values and their 

difference. 

Corsair has options for the operator that does not want to see all of the plotted lines on the log.  One 

option is to click on the visibility X marks on the bottom tag list.  Another option is pressing ‘S’ to go to 

single trace mode.  With single mode only the current tag’s trace is shown.  Arrowing up and down will 

change between traces. 

History 
The History View window is very similar to the log plotted data window except that it is not associated 

with a particular data log.  It is opened from clicking on the ‘History’ button on the Corsair desktop. 

 

The log plotted data window opens with a list of the tags that are on that log.  The history window 

opens with no tags. 



49 | P a g e  
 

 

The operator has to select what tags he wants to see on the history window.  He does this by clicking on 

the ‘Tags’ button on the upper left side and selecting the Tag that he wants.  He may select up to 400 

tags for the window.  When the refresh button is clicked the computer tries to fill in the history data any 

way that it can find it – from data logs or trend samples.  Operation of the window is like the plotted 

data window with the same control options. 

Turn-Back-Time 
The Turn-Back-Time feature is an alternative to plotted views of historical data.  Plotted data requires 

the operator to be familiar with tag names of the data items.  Many times the operator may not be 

interested in how a value changes over time.  He may just need to know its value at a single point in 

time, like last night at midnight.  Turn-Back-Time is an easy to use solution to these problems.  The 

computer uses the information that is available to it to construct as completely as possible what a 

graphic screen looked like at a point in time. 

Turn-Back-Time is accessed from any screen by pressing the ‘Control’ and ‘T’ keys.  A window appears 

that has a time and date picker control on the upper left corner.   



50 | P a g e  
 

 

The operator enters the desired date and time into this control.  When the time is correct he clicks on 

the ‘Refresh’ button and the computer shows him the turned-back version of the screen.  It looks 

through trend samples and data log files to find out as much as it can. 

[ the auto-refresh mode is not operational at this time ] 

A window can be turned back to a time like yesterday at noon.  Clicking on ‘Start’ activates the auto-

refresh mode.  Every 5 seconds the computer advances the time window by 5 seconds and then updates 

the screen.  It ‘plays back’ what happened at that point in time.  This playback rate can be sped up by a 

factor of 2 or 10 times.  The playback can also go in reverse. 

Event Logging 
 

Xxx 

Report Forms 
Report forms are used to generate printed and disk reports from data that has been logged using the 

Event Logging system. 

 



51 | P a g e  
 

Web View 

 
Xxx 

 

Multiple Models 
 

Xxx 

 

Touchscreen Cleaning 
Touchscreens get dirty in industrial applications.  They need to be cleaned in accordance with the 

manufacturer’s recommendations.  Cleaning an operating interface screen can be a problem if it results 

in accidental activation of touchscreen targets.  Corsair includes a standard feature that enables 

touchscreen cleaning without any potential problems.  It is a special window that does not respond to 

touches or mouse clicks.  It also ignores all keys except for the Esc key.  This allows it to also be used for 

cleaning the keyboard. 

One way to get to the cleaning screen is to use the Help/About menu option.  There is a button labeled 

‘Clean’ that opens the cleaning window.  It remains open for 60 seconds or until the Esc key is pressed. 

  

Development 
Development is the process of creating a model file for the Corsair program to use.  Most Corsair 

licenses support development.  The developer must enter model database information, draw graphic 

screens, enter scripts, and do many other activities to create a model that is complete enough for use. 

Installation 
Corsair is a portable application that does not need to be installed into the computer’s operating 

system.  It can be run directly from a USB drive or it can be copied to the computer’s hard drive.  It is 

uninstalled by deleting the files.  It is not copy protected in any way.  Users can copy it to another 

computer for backup purposes.  They are expected to honor the limitations of the license that they have 

purchased. 



52 | P a g e  
 

Typically the first step for a Windows machine is to create a folder named ‘corsair’ on the root of the C: 

drive.  CorsairHMI will supply a minimum of two files.  The first is the Corsair program.  Its file name is 

‘corsair.exe’.  It should be copied to the ‘c:\corsair’ folder.  The second file is the license file.  Its name 

has the form ‘CHMI*.cky’.  The name of the license file begins with ‘CHMI’ followed by some additional 

letters.  It ends with a ‘.cky’ extension.  It must be copied into the same folder as the corsair.exe file.  

The license file tells the Corsair program what features have been purchased by the customer for his 

system. 

An integrator may have several license files from different customers on his computer.  If multiple 

licenses are in the same folder it is not predictable which one will be used by the program.  Common 

practice is to rename unused license files by inserting a capital ‘X’ at the beginning of the file name. 

The next step is typically to create a desktop shortcut to run the program.  Right-click on the corsair.exe 

file and pick the ‘Send to Desktop (Create Shortcut) ‘ option. 

The program needs a computer properties file.  It is typically named ‘corsair.cfg’ and it is kept in the 

same c:\corsair folder.  If the system was not supplied with a computer properties file the developer 

must make one. 

The program also needs a developer preferences file.  It is named ‘corsair.pre’ and it is kept in the same 

folder.  If the system was not supplied with a developer preferences file the developer must make one. 

Each system needs at least one model file.  The model file is typically named ‘corsair.cap’.  It can be kept 

in any folder but it usually is in the same folder as the other files.  

Some developers may want to place a splash icon in the blank background of the Corsair desktop.  This 

file must be a Windows bitmap.  Its name must be ‘corsair.bmp’. 

The final list of files is typically: 

Corsair.exe – the Corsair application 

CHMI*.cky – the license 

corsair.cfg – computer properties 

corsair.pre – developer preferences 

corsair.cap – the model 

corsair.bmp – the optional splash icon 

The suggested procedure for creating the rest of the files is for the developer to start the corsair 

program from the desktop shortcut.  He then picks ‘Users’, and ‘Change Levels’ from the main menu. 



53 | P a g e  
 

 

The developer then clicks on ‘Administrator’ and enters the default password which is ‘admin’.  This 

enables the OK button so he can change the user level to Administrator.  After clicking on OK it should 

say ‘Dev: Admin’ on the status bar on the lower right side of the Corsair desktop window. 

The next step is to create the ‘corsair.pre’ developer preferences file if one was not provided with your 

system.  From the main menu select ‘Setup’ ‘Default Fields’ and answer the prompt.  Then do ‘Setup’ 

‘Graphic Font’ and select something like Courier New, Bold, 12 point.  Then do ‘Setup’ ’Preferences’ to 

open the preferences window. 



54 | P a g e  
 

 

Select the ‘Defaults’ option and click on OK.  The next step is ‘Setup’ ‘Save Preferences’.  This completes 

creating a preference file. 

The next step is to create the ‘corsair.cfg’ computer properties file if one was not provided with your 

system.  Click on the menu’s ‘Setup’ ‘Computer Properties’.  The following properties are a suggestion. 

From the Interface Tab: 

 Check ‘Allow Click on F9 Corner’ 

From the Startup Tab: 

 Select Developer ‘Administrator’ 

 Select Operator ‘Pro’ 

From the Report Tab: 



55 | P a g e  
 

 Check ‘Operator Printing’ 

 Check ‘Landscape’  

For the Large font put Courier New, Bold, 14 point 

 For the Medium font put Courier New, Bold, 10 point 

 For the Small font put Courier New, Normal, 10 point 

From the Security Tab: 

 Check ‘Allow Exit’ 

 DO NOT check ‘Lock Access to Desktop’ 

 Check ‘Allow Minimize’ 

 Enter ‘corsair’ for a Base Session Name 

Clicking on ‘OK’ enters the computer properties you have selected.  The ‘Setup’ ‘Save Properties’ menu 

option creates the file.  Now when you start the program from the shortcut it initializes with 

Administrator privileges. 

The next step is to create an empty Model file if one was not provided with your system.  Select ‘Setup’ 

‘Model List’ from the main menu.  Press F2 to edit the first model specification.  Fill it out like this and 

click on ‘OK’. 

 

The ‘Setup’ ‘Save Properties’ menu option must be used now to save the Model List part of the 

computer properties.  The model file has been specified.  Now it must be created.  From the 

‘Setup’’Model List’ screen menu use first the ‘Empty’ and then the ‘Save’ option. 



56 | P a g e  
 

This completes creation of the files that are required for a CorsairHMI system.  Now the development 

work can begin. 

Development Basics 
Most Corsair development activities can be performed by clicking on a menu item.  There are some 

keystrokes that may be used to do the same things.  Some of these keystrokes have alternative keys that 

do the same thing. 

The ‘F1’ key is used for going to a record, selecting a record for a link, and opening entry assistants. 

The ‘F2’ ‘Edit’ key is used to start editing a data item. 

The ‘F3’ key is used in some places as an alternative edit key. 

The ‘F4’ ‘Create’ key is used to create a data item.  The alternative keystroke is the ‘Ins’ key. 

The ‘F5’ ‘Clone’ key is used to create a duplicate of a data item. 

The ‘F6’ key is used to change database entry modes between a development sheet and single-record 

entry. 

The Control+F6 key combination can be used to jump into a development mode for some windows. 

The ‘F7’ ‘Zoom’ key is used to zoom on a record.  The alternative keystroke is the ‘Z’ key. 

The ‘Del’ key is used to delete a data item. 

‘Ctrl’ plus ‘P’ can frequently be used to initiate printing. 

Development capabilities can be set to different levels.  Those levels are ‘None’, ‘View’, ‘Full’, and 

‘Administrator’.  ‘None’ means that development cannot be seen.  ‘View’ means that it can be seen but 

not changed.  ‘Full’ means that most changes can be made. ‘Administrator’ means that anything can be 

done.  If the current level is greater than ‘None’ it is shown on the bottom right side of the Corsair 

desktop status bar.  The label ‘Dev: Admin’ means that the level is set to Administrator. 

Development changes are made with the ‘File’ ‘Save File’ menu option. 

Development level is changed with the ‘Users’ ‘Change Levels’ menu option.  

 



57 | P a g e  
 

 

This window opens up with the radio buttons set for the current operator and developer levels.  Either 

can be reduced by picking that option and clicking on ‘OK’.  To increase a level a password has to be 

entered.  The default administrator password is ‘ADMIN’.  If it hasn’t been changed typing it in, clicking 

on the ‘Administrator’ radio button, and clicking on ‘OK’ will enable development.  After development is 

finished the ‘Users’ ‘Change Levels’ menu option is used to reopen the window.  Clicking on ‘None’ and 

OK will shut off development. 

Many development activities involve selecting colors.  Colors are specified by three numbers separated 

by hyphens.  Each number can range from 0 to 255.  The three numbers correspond to levels of Red, 

Green, and Blue.  0-0-0 is black.  255-255-255 is white.  0-255-0 is green.  Any color can be specified by a 

three-number combination. 

Corsair uses a color selector window to aid the developer when entering color values.  One version of 

this window looks like this: 

 



58 | P a g e  
 

When the developer finds a color that he wants to reuse it can be added to the 16 custom colors that 

the window allows.  The next time that the color selector is opened that selection will be available. 

Many development activities involve selecting a Font for the computer to use to show some text on the 

screen or for a printout.  The operating system has a font selection window.  One version of this window 

looks like this: 

 

A font is specified by a name, by a point size, and by options for Bold, Italic, Strikeout, and Underline. 

Development databases are initially viewed as sheet-style development. 



59 | P a g e  
 

 

Each row corresponds to a record.  Each column corresponds to a field.  The intersection of a row and a 

column is a single position called a cell.  The current cell is shown in a different color.  It can be changed 

with the arrow keys. 

The developer uses the F4 Create key to insert a record.  He uses the F5 key to clone a record.  If he 

wants to edit a cell he presses the F2 key.  The F6 key is used to switch back and forth to single-record 

editing mode. 

Databases 
 

Sessions 
 

 

A Corsair model (.cap) file can include multiple data records that are known as session records.  Some 

systems may involve several physical computers located in different parts of a facility each running 

copies of the Corsair software.  They would be linked together on a network along with several data 

sources.  Typical data sources would be PLCs - Programmable Logic Controllers.  Each computer would 

have its own copy of the same Corsair application file.  Session records are to create differences in how 

the Corsair program acts on different computers that all use identical application files. 

 



60 | P a g e  
 

For example, let's assume that a project utilizes 5 computers in areas designated as 'Batching', 

'Production', 'QC', 'Warehouse', and 'Office'.  There would be 5 records having these labels in the 

computer database.  Each physical computer would have a unique Computer Properties file on it's hard 

drive.  That file includes a label that corresponds to one of the session records.  This is known as the 

'base' computer record for that location.  This is a label for the Corsair program and it is not the same 

name as the operating system's network ID for that computer. 

 

The base computer record for a location can be used to determine which data sources will communicate 

with that location.  There may be a PLC on a molding machine.  The data source record includes a list of 

what computers have been selected to communicate to that data source.  'Batching', 'Production', and 

'QC' may need to talk to the molding machine but not 'Warehouse' or 'Office'.  The list associated with 

the molding machine data source is what permits this to happen.  The data source is considered to be 

'Live' for the Production computer and 'Memory' or 'Not Real' for the warehouse computer.  Designers 

of large systems may need to review how many simultaneous network connections ('sockets') are 

allowed by their data sources.  This may limit how many computers can treat the data source as being 

'Live'. 

 

The 'Base' computer record is used to configure data acquisition.  The 'View' computer record is used to 

determine what the operator sees.  For simple systems they are the same record. 

 

Initially when the Corsair program is started the view computer record is the same as the base computer 

record.  Corsair offers an operator log-on system.  This is not the same as the login that is used by the 

computer's operating system.  The administrator of the Corsair log-in system can create multiple users 

each with a unique password.  He may enter a computer name for each user.  When a user logs in 

Corsair looks to see if a computer record matches what was entered for that user.  If one is found that 

record becomes the new view computer record as long as that user is logged on. 

 

Corsair can act as a web host using its dynamic HTML generation capabilities.  Multiple clients can be 

logged into a Corsair host at the same time with different view computer records.  This is regulated by 

the log-in type setting for the web host.  One setting is 'Log in to operate, bypass to view'.  The client can 

choose to log in with a user name if he desires to be able to operate the interface.  He can bypass 

without a login if all he needs to do is view Corsair data. 

 



61 | P a g e  
 

If the client chooses the bypass option the Corsair program looks for a computer record that has the 

'Bypass Web Client' type.  That computer record becomes the view computer for that client.  If there is 

not a bypass client record the view computer defaults to the base computer record. 

 

If the web client elects to login he must enter a user name and password.  The view computer for that 

client session is the computer name that was entered for the user name. 

 

Each session record has an associated index number value.  These are positive numbers that begin with 

zero.  These values are used with Corsair session-indexed addressing.  Changing the view session would 

then change what address the interface sees.  For example, an integer tag on a PLC may begin with 

Modbus address 40001.  If the tag is session-indexed a view session with an index value of 0 would 

display the value in register 400001.  A view session with an index value of 1 would display the value in 

register 400002. 

 

Session-indexed tags are frequently used for authority tags.  The authority system can be used to 

determine which view computers can operate a tag and which ones can operate and see alarms.  The 

corsair computer can generate different alarm summaries for different users. 

 

 

 

ID Field 

Hook 1-4 fields 

Screen (First Screen) 

TCP ID 

IP (PLC Network IP Address) 

Host (MBHR Host?) 

MIS IP 

Remote (MBHR Remote?) 

Host (MBHR Primary Host) 



62 | P a g e  
 

Host (MBHR Backup Host) 

Write (Remote can write data?) 

Extended Protocol? Y/N 

TCP Port (MBHR TCP Port (0 defaults to 502) 

Memory Tag MBHR ID     1 

Note 1, 2, and 3 

Other IP Address 

Port Objects Zoom 

Models Zoom (Model Specifications) 

Icon 

Location # 

Sequence # 

Logging – Do Logging Y/N 

X size 

Y size 

There is a single-record editing window for session records. 



63 | P a g e  
 

 

xxxx 

 

Drivers 
A driver is a portion of the CorsairHMI program that is most commonly used to communicate with a 

device.  A PLC driver is used to communicate with a Programmable Logic Controller.  Each driver has 

been written to work with a protocol.  A protocol is a set of rules as to how communications between 

the two devices is going to occur.  Modbus is one example of a group of protocols.  Corsair includes 

several types of Modbus drivers to talk to different types of Modbus devices.  The CorsairHMI Designer 

manual includes a complete list of available driver types. 

Every Corsair program contains all the available drivers.  The first step to use a driver is for the 

developer to create a record in the driver database.  This record is given an identifying name and a type 

that shows which driver it is hooked to.  Multiple driver records can use the same or different drivers. 

Each driver record should contain at least one data source.  A PLC is an example of a data source.  One 

driver record of a Modbus driver may contain 20 data sources.  Each of these data sources would be a 

Modbus-compatible PLC. 

 



64 | P a g e  
 

ID 

Type 

PLCs Zoom 

Port 

Connect Time Out (Seconds) 

Retry   -  Connect Retry (Seconds) 

Note 1, 2, 3 

PLC IP 

MIS IP 

Other IP 

Port Objects Zoom 

Icon 

Location # 

Sequence # 

There is a single-record editing window for driver records. 

 

 

xxx 

 



65 | P a g e  
 

Data Sources 
A data source is a place that the Corsair program goes to get tag data.  Data source driver records are 

created under driver records.  A data source under a Modbus driver may be a Modbus-compatible PLC.  

A data source under a General Electric driver may be a General Electric PLC. 

ID 

Driver Parent 

The driver field shows when driver the data source is located under. It shows two question marks for a 

memory data source that is not under a driver. It is possible to move a data source from one driver to 

another if the interface is not running. When the interface checkbox is not checked the driver selection 

can be changed.  

Register Block Zoom 

Tags Zoom 

Real Y/N 

The ‘Real’ or ‘Live’ yes/no field is used to determine if Corsair will try to communicate with the data 

source. It is set to ‘No’ for demonstration use of the software. For a source to be ‘live’ the following 

must be true:  

1. The field is set to ‘yes.’ 

2. Driver-specific parameters like IP address must be correctly entered. 

3. The sessions zoom has it enabled for the session. 

4. If a ‘live’ tag is used its value must be ‘on.’ 

IP Address 

The IP address on a data source record is used in situations where the driver requires an IP address and 

that address is to be entered on the data source record. Some drivers require IP entry on the driver 

record instead of the source record. Drivers that use serial parts do not require only IP addresses.  

The ‘MIS IP’ and ‘other IP’ fields are enterable values that can be shown on the communications 

architecture printout. They are not used by drivers.  

Node Number 

Time-Out (seconds) 

I/O Zoom 

Authority Link 

Sessions Zoom 



66 | P a g e  
 

MBHR ID # 

Idle Pause (Seconds) 

ID  (TCP ID) 

Doors Zoom 

Stream Y/N 

Note 1, 2, 3 

Port Objects Zoom 

Icon 

Event Area 

Clock Tag Link 

Battery Tag Link 

Some drivers require a Driver Path specification to determine how to route a communications request 

to the data source.  A Driver Path record of the proper type must be created.  The Driver Path Link field 

is used to link this driver path to the data source record.  One Driver Path may be used for multiple Data 

Sources. 

There is a single-record editing window for data source records. 

 



67 | P a g e  
 

The ‘Res Addr’ button is used with some drivers to automatically create tags on the data source. These 

tags will use the special reserved addresses that are specific to that type of driver. 

Register Blocks 
 

 

Name 

Data Source Parent 

The developer must enter both the Start and End address of the block.  The format used to enter these 

addresses varies with the type of the driver that contains the source.  The end address should be a 

location that is after the start address.  If the End address is left blank it is assumed that the block starts 

and ends at a single address. 

When the ‘Private’ flag on a block is set to Yes the developer is marking that the block is used by the PLC 

and is not to be read or written by the Corsair interface.  There should not be any tags or doors located 

in a private register block.  This feature is for documentation purposes. 

The OIT or HMI changeable Yes/No field should be set to ‘Yes’ if Corsair has changeable tags or Door 

data located within the block. 

There is a single-record editing window for register block records. 

 

 

Some drivers can show a length value for the block based upon the entered Start and End address. 

 



68 | P a g e  
 

Tags 
A tag is a storage location in computer memory that holds data while the Corsair program is running.   

Tag Types 

Corsair tag types describe the way that data is encoded.  There are several types for many different 

purposes.  The exact way that each type is addressed depends on the type of driver that is used. 

When a tag record is created it initially has the ?? undefined type. The developer can press ‘F2’ on the 

type field and enter a type. He can also then press ‘F1’ to bring up a tag type selector listing all available 

types. 

The ‘indicator’ tag type is a single-bit logical flag. Indicators can be changed by the PLC and read by the 

Corsair interface. They indicate on/off conditions. The corsair program cannot change the status of an 

indicator. The default text description for the program cannot change the status of an indicator. The 

default text description for the zero state of an indicator is ‘Off’. The description for the one state of an 

indicator is ‘On’. Tag enumerations can be used to change these descriptions if desired. 

 The ‘switch’ tag type is also a single-bit logical flag. Switches can be changed by either the PLC or the 

Corsair interface. When a human operator operates a switch tag he picks options from a switch 

operating window. 

The ‘button’ tag type is a single of data The Corsair program turns the bit on to signal to the PLC to do 

something. The PLC then shuts the bit off. The Corsair operator does not have an option to shut off a 

button. 

The ‘HOA’ tag type is a specialized 3-bit data type. One of the bits is controlled by the PLC. The other 

two are controlled from the PLC or from the Corsair interface. This type is commonly used in control 

applications where it is desired to force a motor on or off independently of normal automatic logic. 

The ‘integer’ tag type is for a 16-bit integer value. It may be changed by the PLC or by the Corsair 

program. It may be signed value ranging from -32768 to +32767. It may be an unsigned value ranging 

from 0 to 65535. 

The ‘Double Int’ tag type is for a 32-bit integer value. It works over a much greater range than the 16-bit 

integer type. 

The ‘Float’ tag type is for a floating point value encoded in IEE standard 32-bit format. 

The ‘4-bit alarm’ type is for alarm status data arranged in Corsair standard bit pattern. The ‘1-bit alarm’ 

type is for another type of alarm status data. The same bit patterns are available for calls. 

String, Loose String, and Reverse String data types are for encoding of ACSII string data in PLC memory. 

Each type uses a different scheme for arranging the characters in PLC memory. The choice usually 

depends on the type of PLC and programming system that it uses. 



69 | P a g e  
 

The ‘Cascade’ type is used for larger-value integer data in PLCs that do not support 32-bit integers. It is 

useful in cases where integer precision needs to be maintained in totalizing. The Cascade uses two 16-

bit registers. The net value is the second register multiplied by 10,000 and then added to the first. A 

total of 999,999 is possible with a Cascade. 

The bit-field types vary from 1 bit to 16. Data encoded in these types is always unsigned and cannot be 

negative. Bit fields are frequently used to encode sequence options in recipe systems. 

 

Tag Configuration 

All tags are either ‘Memory’ or ‘Live’.  A memory tag gets its value from what is stored in the Corsair 

computer’s memory.  This value can be changed by the operator, by a script, from a block, or written 

from another computer.  A ‘Live’ tag gets its value from a data source using a driver.  The driver 

performs a scanning function where the value from the data source is continuously read into tag 

memory. 

A company may have a tank that holds water.  A pressure transmitter tied to the bottom of the tank is 

wired to a PLC.  The PLC translates the electrical signal from the transmitter into a tank elevation in feet.  

This elevation is found at a memory address in the PLC.  The developer sets up a driver and inserts a 

data source for the PLC under it.  Under the data source he inserts a tag named ‘Tank Level’.  This tag is 

linked to a value placement on a screen.  Now the operator can see the number of feet of water that are 

in the tank. 

Every Corsair tag is an array.  An array is a collection of values of the same type.  Each of these values is 

an element of the array.  An integer array with a size of 4 could contain the values 12, 97, -258, and 473.  

Elements of an array are distinguished by index number.  Index numbers start at 0.  They can be as large 

as the size of the array minus one.  This array would be: 

 

Element Value 

---------- - -------- 

Index 0  12 

Index 1  97 

Index 2  -258 

Index 3  473 

If a developer creates a tag without entering a size for it Corsair defaults to a size of 1.  When the 

developer wants to show the value of a tag on the screen he creates a value placement.  He must link it 

to a tag and specify which index of the tag is to be shown. 



70 | P a g e  
 

Tag 

Type 

The ‘Start’ field is where the starting address of the tag is entered.  It is left blank for a memory tag.  If 

the tag is on a data source that is on a driver the format of the address depends upon the type of the 

driver.  The developer can press the F2 key to begin editing the address and then F1 to open the address 

builder.  The address builder will help him to enter an address that is correct for the driver type. 

The ‘End’ field is a display-only field that shows the end address of the tag.  The end address depends on 

the size of the tag, the length if it is a string, and the type of indexing that is selected for it. 

The ‘Format or Length’ field is used to enter the data format for numeric tags or the length of string 

tags.  The F1 key can be used while entering a format to open the format builder window.  String lengths 

can vary from 1 to 78 characters long. 

The ‘Changeable?’ field must be set to ‘Yes’ if the tag data is to be changed from Corsair.  Indicator tags 

cannot be changeable.  Button and Switch tags must be changeable. 

The ‘Size’ field is the array element size of the tag.  Even if a zero is entered Corsair will correct it to a 

value of 1. 

Corsair tag arrays in data source memory can be indexed in two ways.  The default indexing is ‘Device 

size indexing’.  The other option is ‘Register indexing’.  The ‘IR Indexing by Register’ flag is set to Yes to 

use Register indexing. 

Session indexed tags use a special type of array indexing that is used in systems that have multiple 

sessions entered into the Corsair database.  The ‘SI Session Indexing’ field is used to turn on this type of 

indexing. 

Data Source Parent 

Enumerations Zoom 

Trend Sample Time 

Trend samples are copies of the tag data taken at regular time intervals.  These samples are 

used to show trend graphs of the tag data.  They are also used for Turn-Back-Time history screens and 

for History review.  The sample time parameter represents the time between trend samples.  Trend 

sample times are entered with 1-second resolution. 

Trend samples are used as the source of pretrigger data for logs.    When multiple tags are on 

the same log and the pretrigger function is selected it is essential that all of those tags have the same 

trend sample time. 

Trend Period Time 



71 | P a g e  
 

Trend samples are collected at a rate determined by the trend sample time.  Data is collected 

over the total Trend Period.  The number of samples is determined by how many trend sample intervals 

fit within the trend period.  Corsair shows how many samples it is using.  It typically adds at least one 

extra sample. 

Long trend periods with a large sample count do not load down the Corsair computer because a 

circular buffer is used.  Corsair does not have to move data through the buffer.  

Authority Tag link 

Alarms and Calls zoom 

Block ID 

Block Parameters Zoom 

Block Variables Monitor Zoom 

Min and Max values 

 When the history of a tag is displayed on a log or a history window its value is plotted versus 

time.  The entered minimum and maximum values are the default scale values for the this tag on the 

plot. 

Address 2, 3, 4 

MBHR Address 

Event Area 

Units 

 The Units field is for a label describing the measurement units for the tag value.  If it is a flow in 

gallons per minute ‘Gpm’ would be typical for this field. 

Integration (Msec) 

 Some tag values represent things that can be integrated over time.  A common example is a tag 

with a flow in gallons per minute.  A time-based integration of this flow would result in totalized gallons.  

A nonzero value in this time enables the integration.  For a gpm flow this time should be set to ‘1m’.  

The setpoint can be resolved to one millisecond. 

Totals Units 

 When a tag has a nonzero integration period Corsair can calculate totalized values.  This field is 

for a label for the totalized units.  If the tag is Gallons per Minute this label is typically Gallons. 

 



72 | P a g e  
 

There is a single-record editing window for tag records. 

 

 

Tag Data Formats 

Tag numeric formats are entered into the computer with a specification string. ‘-2.2’, ‘U5’, and ‘U,04.1’ 

are all examples of format specification strings. Each specification string has an associated sample string 

that the computer can display. Examples of sample strings include ‘-##.##’ and ‘##,###’ 

The following options may be chosen through the specification string: 

Signed versus unsigned data 

Comma separation of 3 digit groups 

Leading zero padding 

Display digit width 

Display decimal places 

Implied decimal point position for integer types 

Specification: -5 or 5       Sample: -#####               

A number in the specification shows the number of digits that the computer is to display for the value. 



73 | P a g e  
 

The number can be as large as 31. Data is signed by default. This sample occupies 6 character spaces on 

the screen to allow for a minus sign followed by 5 digits. A 16-bit integer could range in value from -

32768 to 32767. A 32-bit double integer would have a much larger range of values. If the value is 

positive the minus sign in the sample is replaced by a space on the display. 

 

Specification: U5       Sample: ####                          

The letter ‘U’ in a specification stands for unsigned. A 16-bit unsigned integer can range in value from 0 

to 65535. No extra space is needed for display of a minus sign. 

 

Specification: U,5       Sample: ##,###                            

A comma in a specification tells the computer to break digits to the left decimal point into groups of 

three with commas. 

 

Specification: U04       Sample: ####                            

A zero before the digit count in a specification string tells the computer to display the value with Leading 

Zero Padding. A value of 5 will be displayed as ‘0005’. Zeros will be shown as needed to maintain a 4-

digit display. 

 

Specification: -2.2       Sample: -##.##                          

Implied decimal points are used with integer data inside PLCs. Care must be taken to not confuse this 

with floating point data. If a format shows two places to the right of an implied decimal point, an integer 

value of 123 in the PLC would be displayed as ‘1.23’. A value of 5 would be displayed as ‘0.05’. Corsair 

supports from 0 to 7 digits to the right of decimal points. 

There are also several special purpose formats. These include: 

AM/PM: The time will be displayed as ‘##:##AM’. It is encoded into the PLC register as an hour ranging 

from 0 to 23 multiplied by 100 and added to a minute value ranging from 0 to 59. 

Date: The date will be displayed as ‘Jan ##’. It is encoded into the PLC register as a month ranging from 1 

to 12 multiplied by 100 and added to a day value ranging from 1 to 31. 

MO/DA: The date will be displayed as ‘##/##’. It is encoded into the PLC register as a month ranging 

from 1 to 12 multiplied by 100 and added to a day value ranging from 1 to 31. 

Weekday: The weekday will be displayed as ‘Sun’. It is encoded into the PLC register as 0 to 6 with 0 

displayed as ‘Sun’ 



74 | P a g e  
 

Duration: This format is used to display a time that is encoded in the PLC register as a number of 

seconds. It is displayed as ‘#d #h #m #s.’ 

Msec: This format is used to display a time that is encoded in the PLC register as a number of 

milliseconds. It is displayed as ‘#d #h #m #.###s’. 

TOD: This is a time of day format that is encoded in the PLC as a number of seconds past midnight. It is 

displayed as ‘##:##:##AM’. 

Pressing ‘F1’ while editing a tag format opens a window that helps to enter formats. 

 

 

Strings 

The Corsair program can work with character string data. When a tag record is given a string data type 

the developer has to enter in maximum length. This can vary from 1 to 78 characters. A size greater than 

1 can be entered to create an array of strings. 

There are 3 different string tag types. The first is called simply ‘string.’ The second is ‘reverse string.’ The 

third is ‘loose string.’ If the tag record is Corsair memory resident and not on a PLC all three types act the 

same. The difference occurs when the types are assigned to a PLC address. The 8-bit characters are 



75 | P a g e  
 

arranged differently in PLC memory for each string type. An example would be the string ‘ABCD.’ The 

hexadecimal ACSII code for an uppercase ‘A’ is 0x41, B is 0x42, C is 0x43 and D is 0x44. Each of these 

ASCII codes occupies an 8-bit byte of memory. PLC memory is usually divided into 16-bit registers. In this 

example the registers are numbered 40001, 40002 and so on. 

If our ‘ABCD’ string is stored as a normal string type the values in the registers would be: 

 Register  40001  0x4241 

 Register 40002  0x4443 

Each 16-bit register holds two 8-bit ASCII characters. The least significant byte of each register has the 

first character and the most significant byte has the second character of the pair. This is an ‘LSB first’ 

byte ordering. It is the natural byte ordering for the processors in the computers that run the Corsair 

program. Normal strings are the most efficient strings for the Corsair program to use. 

If our ‘ABCD’ string is stored as a ‘reverse’ string type the values in the registers would be: 

 Register 40001  0x4142 

 Register 40002  0x4344 

The most significant byte of each register has the first character and the least significant byte has the 

second character of the pair. This is a ‘MSB first’ byte ordering. Some processors use it as a natural byte 

ordering. 

If our ‘ABCD’ string is stored as a ‘loose’ string, the values in the registers would be: 

 Register 40001  0x41 

 Register 40002  0x42 

 Register 40003  0x43 

 Register 40004  0x44 

Each character occupies the least significant byte of a register. The most significant byte is ignored by 

the Corsair computer when it reads data from the PLC. It may be set to zero when Corsair writes to the 

PLC. Loose strings use twice as much PLC memory as the other string types do.  

The Corsair program has experts to help the PLC programmer write code for handling ASCII strings. The 

first aid is an ASCII code reference chart that may be printed out. The second aid is a window that 

accepts ASCII strings and converts them to PLC register data for normal, reverse, and loose strings. The 

third aid is a register value to ASCII string converter. 

 



76 | P a g e  
 

Alarms 
Alarm database records describe items that can appear on the operator’s alarm summary display.  

Alarms do not show until they are tripped.  After they are tripped the operator acknowledges them.  The 

next step is for the alarm to be reset.  Resets can come from PLC logic or from the operator. 

The ID name of the Alarm is used to identify the alarm and enable it to be linked to graphic placements. 

The index field is a number that locates the alarm on its parent tag.  The parent tag must have a 1-bit or 

a 4-bit alarm type.  If that tag is located on a data source Corsair can calculate and display a Start and 

End address.  These addresses are not changeable by the operator.  He can only adjust the index value. 

Common Corsair development practice is to initially develop Alarms with zero in the index field.    After 

the alarm list is substantially complete nonzero indexes are entered to place the alarms in their final 

locations. 

Tag Parent 

Resettable? 

Description 

An alarm that is not on a parent tag is considered to be a memory alarm.  Memory alarms can be 

initiated from a Corsair block.  The name of the block is entered on the alarm record.  Block names 

entered on alarms that are not memory are not used. 

Block Parameter Zoom 

Block Variables Monitor Zoom 

Latching Y/N 

Email Zoom 

Sounds Zoom 

Play 

Repeat – Sound Repeat Time 

The default behavior for a Corsair alarm is to be shown on the Alarm Summary window when the alarm 

is active.  This may not be a good idea for some alarms.  ‘Amount’ alarms that are used to log production 

totals are like that.  A field named ‘Not on Summary’ can be set to ‘Yes’ to keep it from showing. 

Event Area 

Sessions Zoom 

Ack Authority Link 



77 | P a g e  
 

Reset Authority Link 

Priority # 

 

There is a single-record editing window for alarm records. 

 

 

The ‘Events’ button leads to a window that characterizes the event logging for the alarm. 



78 | P a g e  
 

 

The ‘Email’ button opens a window that characterizes what the Corsair email system does with the 

alarm. 



79 | P a g e  
 

 

Corsair can send emails when an alarm is tripped, when it is acknowledged by the operator, and when it 

is reset.  As many as 3 email send groups can be entered for each of these actions.  The ‘Review’ buttons 

can be used by the developer to see what each type of email will look like. 

 

Calls 
Corsair Calls are very similar to Corsair Alarms.  The field options are nearly identical. 

ID 

Index 

Start 

End 

Tag 

Resettable? 

Description 

Block ID 

Block Parameters Zoom 



80 | P a g e  
 

Block Variables Monitor Zoom 

Email Zoom 

Sounds Zoom 

Play 

Repeat time 

Not on Summary Y/N 

Event Area 

Sessions Zoom 

Ack Authority Link 

Reset Authority Link 

Priority # 

There is a single-record editing window for call records. 

 

 

xxxxx 

 

Icons 
 

 



81 | P a g e  
 

Name 

X size 

Y size 

The color field is used to specify the background color of the window that is used to view the icon. 

A icon has a handle point.  This is a single point on the icon that is used to determine where the icon is 

located on a screen. 

Options are available to turn the display of the handle point on and off and to enter it’s X and Y 

coordinate positions. 

There is a single-record editing window for icon records. 

 

The ‘View’ button allows the developer to see the icon. 

Drawings 
A drawing is a collection of graphic placements that are used as a set.  A developer may make a drawing 

of a motor.  It may be a rectangle with some ellipses on the ends.  The motor drawing can then be 

placed many times on Corsair screens for the operator to see.  Changing the drawing will change the 

appearance of all the motor placements. 

The ID Name of the drawing is used by the developer to hook the drawing into placements on screens. 

The color field is used to specify the background color of the window that is used to develop the 

drawing. 

A ‘listed’ drawing is a drawing that is used for part of a project’s documentation.  Listed drawings can be 

viewed by the operator or printed. 

A drawing has a handle point.  This is a single point on the drawing that is used to determine where the 

drawing is located on a screen.  It is not used on a listed drawing. 



82 | P a g e  
 

Options are available to turn the display of the handle point on and off and to enter it’s X and Y 

coordinate positions. 

There is a single-record editing window for drawing records. 

 

The Placements button on this window opens up editing of graphic placements.  This is how drawing 

images are created. 

Screens 
A screen is a collection of graphic placements that are viewed by the operator. 

The ID name of a screen is used as a label to identify it. 

The Escape Screen link is used to specify what screen is displayed when the operator escapes from the 

screen. 

Blank bottom status bar?  Y/N 

The color field specifies the background color for the screen. 

Blank top title?  Y/N 

Pattern – is it a pattern? 

Authority Link 

Sessions List 

GPS area Tag 

GPS Screen Number 

 

There is a single-record editing window for screen records. 

 



83 | P a g e  
 

 

The Placements button on this window opens up editing of graphic placements.  This is how screen 

images are created. 

Sounds 
Corsair can play wave sound files when alarms or calls are tripped. This results in sound from the 

computer’s speakers. 

The first step is to create a folder on the computer’s hard drive to contain the sounds. A recommended 

possibility is: 

C:\cwaves\ 

This folder will contain all the wave files that the Corsair program is to use. Each of these files has a .wav 

extension. Corsair has no provision for generating wave files. The sound recorder that comes with 

Windows is a common way to generate them. 

After the wave files are generated and placed in the proper folder the developer can start the Corsair 

program. There is an option under the ‘Tools’ menu called ‘Play Sound’ that can be used to test if the 

computers speakers are working properly. 

Each Corsair computer must be configured to use sounds. This is done as a part of Setup/Computer 

Properties. The interface tab includes an option to ‘Use Sound’ that must be checked. Below that option 

is an edit box for entering the path to the folder where the wave files are. C:\cwaves\ would be a typical 

entry for this option. 

The next step is to create sound records in the Corsair database. This is done under 

Edit/Graphic/Sounds. Each sound record gets a name. This is the identity that will be used to hook the 

sounds to alarms – it is not the name of the wave file. 



84 | P a g e  
 

Zooming under each sound goes to a database of the wave files that are used for that sound. A Sound 

can consist of several files that are played in consecutive order. It is possible to put a short time delay 

before each file is played. Normally this timing is left at zero. It can be as short as one millisecond 

(entered as 0.001s) 

Wave file names can be typed into the database or found using a ‘browse’ function. The browse 

function will return a full path specification to the file. The path specification in the computer properties 

is put on the front of the file name that is in the database. Many times if a file name is found with the 

browse the path specification will have to be removed from the file name. The computer cannot play 

C:\cwaves\C:\cwaves\ding.wav. 

Corsair has ‘Play’ database fields that can be used to test sounds. They are available for individual wave 

file records and for sound records that include multiple wave files. The ‘Use Sound’ checkbox under 

Computer Properties must be checked for these ‘Play’ files to work. The play field is activated by 

arrowing to it and pressing ‘F2’ edit key. Another option is to click on the field and then click on it a 

second time. 

The Tools/Monitor Sounds menu option is a way to see what is happening with the sound system. It has 

an option to cancel playing of the current sound. 

The next step is to associate sounds with alarm and call records. Each alarm and call record has a zoom 

field that allows entry of one or more sounds. A  ‘Play’ field is available for testing sound. 

 

Sound Record Fields  

ID 

Files Zoom 

Play 

RTP Tag – Request Talk Path 

RTP Index # 

RTP Value # 

TPR Tag – Talk Path Ready Tag 

TPR Index 

CTP Tag – Clear Talk Path Tag 

CTP Index 

CTP Value 



85 | P a g e  
 

Timeout (seconds) 

 

 

Sheets 
A user sheet is a collection of data in a row and column format for use by the operator.  The developer 

must specify a name for the sheet and how many rows and columns it has. 

There is a single-record editing window for sheet records. 

 

 

xxxx 

 

Trends 
There is a single-record editing window for trend records. 

 



86 | P a g e  
 

 

The ‘Tags’ button opens a window that is used to place tags on the trend.  These tags should be set up 

to have trend sample data.  Typically the Trend Period on the tag is set to be the same as or longer than 

the width of the trend. 

 

Scripts 
Scripts are programs that are created by the Corsair developer using script steps.  The type of the step 

determines what the step does.  Different step types require different parameters.  The CorsairHMI 

Designer manual describes the available script step types. 

 

There is a single-record editing window for script records. 

 



87 | P a g e  
 

 

xxxxx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Logs 
Corsair Logs are tasks that the Corsair computer can perform based upon trigger conditions.  Logs can be 

used to record historical data in disk files, to print, and do other tasks. 



88 | P a g e  
 

 

Creating a Log 

Logs are created from the main menu’s Edit/ More/ Logs selection.  The F4 Create key can be used to 

create a log record.  There are 5 zoom fields. 

There is a single-record editing window for data log records. 

 

Each of the zoom windows has a ‘trigger’ button on the bottom.  These buttons are for the Corsair 

developer in case he wants to manually trigger execution of the log. 

The Triggers Zoom 

 



89 | P a g e  
 

The Triggers zoom opens a window that is used to configure the triggering of the log.  Logs can be 

triggered continually, upon changes in tag data, from trigger tags, or based upon the time of day.  

Combinations of any or all of these triggers are possible. 

The Trigger Computers button on the top of the window determines which computers in a multiple 

computer system are allowed to trigger the log.  A group of 4 computers may all need to look at the data 

in a log file that is on a server.  Each computer can view the file but only one of them is to write to it.  

That computer should be the only one that is highlighted in the Trigger Computers list. 

The simplest form of triggering is Always Triggering.  The Always checkbox must he checked and a 

nonzero time interval entered to the right of it.  If it is set for ‘30s’ the log will trigger on interface 

startup and every 30 seconds after that. 

Data Change triggering occurs when the data in a tag changes by more than an entered value.  The Tag 

List button is used to enter a list of tags that are used by the log.  As each tag is entered the developer 

can signify if it is to be used for data change triggering.  The ‘On Change’ checkbox on the Triggers zoom 

window shows if any tags have been configured with data change triggering enabled. 

A log can also be triggered based upon the status of up to 5 tags.  Each of these tags can be entered as a 

‘Corsair Triplet’ consisting of a tag, and index expression tag, and an index constant.  The ‘Tag’ checkbox 

on the left side of the window must be checked for this entry to happen.  These tags are normally 

indicators or switches as the log looks for an on-off value to determine triggering.  Triggering occurs 

when the tag is ‘On’ unless the ‘Invert’ checkbox is checked.  Invert will cause the log to trigger when the 

tag is ‘Off’. 

When the tag is On (or Off if inverted) Corsair can do two possible types or triggering.  Edge triggering 

means that that log only triggers on the Off to On transition of the tag data.  For it to trigger again the 

tag must go Off and then back On.  Repeat triggering happens with the Edge checkbox is not checked.  It 

uses a time interval.  If a tag has 30 second repeat triggering the log triggers when the tag comes on and 

at 30 second intervals until the tag goes off. 

Post triggering is an option that can be used with tag triggering.  If ‘Post’ is checked the log will trigger 

one more time after all of the trigger tags go to Off. 

Some logs may be set up to output pretrigger data to a log file.  This is set up under the log Action zoom.  

Pretrigger data is only used when the fifth of the five possible trigger tags is turned on.  The find button 

for this tag says ‘PTag’ instead of ‘Tag’. 

There are 5 possible time of day triggers for each log.  If they are checked the developer enters a start 

and stop time for each one.  The computers current clock time is displayed.  Each time of day trigger has 

an ‘Active’ checkbox that shows if it is currently active based upon the computers clock.  Edge and 

Repeat modes work just like with the tag triggers. 

The Action Zoom 



90 | P a g e  
 

 

The Action zoom window for a log determines what the log does.  It needs a combination of an action 

and an object.  The possibilities are: 

Action – None 

Action – Make File Object – Tag list 

Action – Make File Object – Sheet 

Action – Print  Object – Sheet 

Action – Print  Object – Screen 

Action – Print  Object – Trend 

Action – Print  Object – PLC I/O 

Action – Run Script Object – Script 

Make File – Tag List – is one of the most common log tasks.  It is used to log historical data to a CSV file.  

The Tag List button is used to enter the list of tags.  This is the same tag list that is used for data change 

triggering.  A tag list can be used for change triggering even if the Object is not Tag List. 



91 | P a g e  
 

The Run Script action can be used for time of day scheduling of a script. 

A Make File action requires the specifying of a file name.  The file name can be the default as shown.  It 

can be set to ‘Specify’ and entered.  It can come from a tag triplet.  It can be varied automatically based 

upon month, day, or hour.  The Prefix entry is typically used for a path specification.  The Suffix entry is 

typically used to specify an extension like ‘.csv’. 

The Options group box shows other options for the log action.  The ‘Timestamp’ checkbox is used with 

Tag List files to place date and time fields at the start of each line of the file.  This can be in the local 

computer time or in GMT (UCT) time.  GMT is nearly always a better option because it eliminates 

confusion in the data records when changing to or from Daylight Savings Time.  There are 6 date and 

time fields.  They are all numbers.  The first is the year, the second is the month as 1 through 12, the 

third is the day of the month, the fourth is the hour as 0 through 23, the fifth is the minutes from 0 

through 59, and the sixth is the seconds.  The seconds value may have up to three decimal places. 

’23.456’ means 456 milliseconds after 23 seconds after the minute. 

The normal mode for a disk file of tag data is for Corsair to create the file and then append records to it.  

The ‘Renew’ option tells Corsair to create the file each time that it is triggered.  Renew log files will only 

have 1 record of data in them.  They are designed for real-time file updates that are read by other 

software. 

The ‘Use Color’ option is used with print logs to tell Corsair to used color printing whenever possible 

instead of Black and White. 

The Data Rows option is used with Sheet File and Sheet Print actions.  If Data Rows is selected Corsair 

will look up from the bottom of the sheet to see how many of the bottom rows are blank.  They will not 

be printed. 

The Other File Format radio button is not available.  CSV files are the only currently supported format 

for logs. 

Pretrigger Data is an option with Tag List files.  If it is checked and the log is triggered from the fifth of 

the five possible tag triggers Corsair will attempt to insert pretrigger data into the file.  This is trend data 

that Corsair remembered in the form of trend samples from the time before the trigger occurred.  Each 

tag that is on the log must be set up with the same trend sampling period and trend interval.  When the 

trigger occurs Corsair ‘steps back’ into the trend data by the entered ‘Skip Interval’ time.  It puts up to 

the ‘Max Samples’ count of samples of pretrigger data into the log file.  If Max Samples is set to zero 

Corsair will insert as many pretrigger samples as it has available. 

The Control Zoom 



92 | P a g e  
 

 

The Auto Purge Data option is currently not available for Disk File logs. 

The View Zoom 

 

The View zoom window is used to control viewing options for the log.  The Operator View checkbox is 

used to allow operator viewing of the log data if some form of view is available for the logs Action and 

Object.  

The Print Landscape checkbox is used to tell Corsair to print landscape instead of portrait if landscape 

printing is available for that type of log. 



93 | P a g e  
 

The Trigger button on the bottom is used to manually trigger the log.  If it is successfully triggered the 

Trigger Count will increment.  It then goes into a list for execution.  If it executes successfully the 

Execute Count will increment.  The last Trigger or Execution error is shown.  The Clear button clears the 

error code and the counts. 

The Computer Zoom 

The Computer Zoom field is used to access a list of computers that can use the log.  It is used in multi-

computer Corsair systems.  Computers that are not selected in this list will not be able to view the logs 

files. 

Variable Rate Logging 

CSV data files are not the most efficient way to store data.  Data stored at a short time interval can 

result in huge files with slow access times. 

Many processes require high-speed logging while they are running but they don’t run very often.  There 

is no need for many data samples when the process is not running.  Variable rate logging can handle 

these situations. 

Suppose a process employs a kiln that is used to heat material that flows through it.  Logged tags 

include: 

 Material Temperature – Ambient to 400 degrees F 

 Material Tons per Hour – 0 to 20.0 tph 

 Stack Temperature – Ambient to 600 degrees F 

 Draft – 0 to 10 inches water column 

While the kiln is in use data is desired at a 15-second interval.  It is desired to see the complete ramp-up 

at the beginning of the run and the ramp down at the end.  A combination of a variable logging rate 

combined with pretrigger data, a posttrigger sample, and logging on change will work for this system.  A 

contact that shows that the combustion blower is running controls a Corsair indicator tag. 

The first step is to set up a c:\clogs\ folder for storing Corsair log data.  The next step is to create a log 

record and go to the ‘Triggers’ zoom.  Check ‘Always’ and enter ‘8h’ for the Always interval.  This will 

result in a minimum of 3 samples on days that the kiln does not run.  Check ‘Tag’ on the fifth trigger tag.  

The ‘PTag’ button can be used to select the combustion blower running indication into the Trigger Tags 

column.  Set the corresponding interval to ‘15s’.  Check the ‘Post’ checkbox and accept the window. 

Next go to the Action zoom.  The Trigger Action is ‘Make File’.  The file is a ‘Tag List’.  The file name is 

‘Monthly Auto’.  The prefix is ‘C:\clogs\kiln_data_’.  The suffix is ‘.CSV’.  For options pick ‘CSV File’, 

‘Timestamp’, ‘GMT’, and ‘Pretrigger Data’.  If the pretrigger samples are at a 15-second interval a ‘Max 

Samples’ value of 20 would produce 5 minutes of pretrigger data.  Accept the Action window entries. 



94 | P a g e  
 

The next step is to go to the 4 tags that are going to be logged.  Enter the minimum and maximum scale 

for the plot of the value.  Enter a sample time of ‘15s’ on each tag.  Enter a trend period of ‘2h’ for 2 

hours.  All the tags on a log with pretrigger data need to have identical sample times. 

The material Tons per Hour tag should have the units label set to ‘tph’.  The integration period should be 

set to ‘1h’.  The Totals Units label should be set to ‘Tons’. 

Next the Logs ‘Tags’ zoom is used to list the tags on the log.  Each tag gets the desired pen color on the 

graph.  Each tag should have the ‘On Change’ set to ‘Yes’.  Set the ‘Change Delta’ to 20.0 for material 

temperature, 1.0 for tons per hour, 30.0 for stack temperature, and 1.0 for draft. 

The ‘View’ zoom is used to check ‘Operator View’ and ‘Use for TBT and History’. 

2-hour trends can be created for each tag if desired. 

Now the log will always trigger every 8 hours.  If the combustion blower comes on the previous 5 

minutes of pretrigger data will be logged at 15 second intervals.  All tags will log every 15 seconds as 

long as the blower is running and for one extra sample after the blower stops.  The log is also triggered 

whenever a variable changes significantly. 

Ethernet Objects 
Ethernet Objects are database records that are entered by the developer to be shown as objects on the 

Communications Architecture printout. 

There can be as many as three IP addresses entered for an Ethernet object.  These are addresses for the 

‘PLC’, ‘MIS’, and ‘Other’ networks.  If they are left at 0.0.0.0 the object is not on that network.  If 

255.255.255.255 is entered the address is displayed as ‘Auto’.  Other values are shown as normal IP 

addresses. 

Up to three notes can be entered on the Object to be printed on the architecture. 

 

SQL Paths 
There is a single-record editing window for SQL Path records. 

 



95 | P a g e  
 

 

xxxxx 

 

FTP Paths 
 

There is a single-record editing window for FTP Path records. 

 

 

xxxxx 

 



96 | P a g e  
 

Driver Paths 
 

Xxxx 

 

 

Local and Global Database Views 
 

Corsair uses a treelike family structure for database records. 

Driver 1 

 PLC A 

  Tag A1 

 PLC B 

  Tag B1 

  Tag B2 

Driver 2 

 PLC C 

  Tag C1 

  Tag C2 

There are two driver records.  The first has two PLC records titled A and B.  The second has a single PLC 

record titled C. 

A developer may be looking at the Driver 1 record.  If he zooms on the data source zoom field he sees 

PLC A and PLC B.  If he goes to the Driver 2 record and does the zoom he sees the PLC C record.  The 

data source sheets that he sees are ‘Local’ views that are under the driver.  They only show the data 

sources for the driver that started the zoom. 

If the developer chooses the ‘Edit’ ‘Data’ ‘Sources’ menu option he sees PLC A, B, and C.  This is a 

‘Global’ view of the data sources.  

The same system of local and global views of data sources also applies to local and global views of tags. 



97 | P a g e  
 

When development data is being shown with a local view a menu option is available to switch the 

display to a global view.  Another option switches it back to local. 

Creating Graphics 
The ‘Edit’ ’Graphics’ ’Screens’ menu option opens the development sheet that creates screens. Zooming 

on a screen record opens graphic development of that screen.  The same thing is true for drawings. 

Objects that are shown on Corsair screens or drawings are called ‘placements’.  These are the ‘graphics 

primitives’ of the Corsair system.  Placements are created by moving the cursor to a location on the 

screen and pressing the F4 ‘Create’ key.  This opens the placement type selection window.  The ‘type’ of 

a placement determines what the operator sees when the placement is shown on the screen. 

 

The developer must select a placement type.  This type cannot be changed after the placement is 

created.  If a wrong type is selected the placement must be deleted.  The next step is the placement 

action window. 



98 | P a g e  
 

 

The developer must select the action for the placement.   The ‘action’ determines what happens when 

the operator clicks on the placement.   The available actions are different for screen and drawing 

placements. 

The type of a placement and its action are independent.  Each type can have any allowed action. 

The developer should select an action.   Now he sees the placement editing window.  The appearance of 

this window changes based upon the placement type and action. 

 



99 | P a g e  
 

 

The updated appearance of the placement is shown on the upper right part of the window.   It may be 

miniaturized if needed to fit in the space.  The window is used to open other windows that change 

characteristics of the placement or a group of placements.  After it is closed the placement can be 

moved and sized using a mouse and the keyboard. 

Every placement has one or more handle points depending on the type.  A text placement has one 

handle point.  A rectangle has eight.   To move a placement the developer clicks near one of the handle 

points.  A second click on the same point causes the placement to start flashing.  The developer moves 

the mouse cursor to a new location and clicks again to locate the placement.   The movement can be 

canceled with the ‘ESC’ key. 

The size of some placement types can be adjusted by rubber-banding.  This is started by holding down 

the shift key while clicking on the handle point.  This makes it a rubber-banding move instead of a whole 

placement move. 

Placements frequently overlap each other on the screen.  When a placement is selected there is a 

‘Front’ and a ‘Back’ menu option.  These options can be used to create any desired overlap pattern. 

After one placement has been selected another can be added to the selection by pressing the Control 

key while clicking on the second placement.  Placements can be moved as a group. 

Pressing F2 opens the placement editing window for the selected placement(s). 

 

Placement Types 
The type of a placement corresponds to what the operator sees when the placement is on a screen. 



100 | P a g e  
 

 

Address 

Xxx 

 

Arc 

Xxx 



101 | P a g e  
 

 

 

Bar Graph 

Xxx 



102 | P a g e  
 

 

 

Checkbox 

Checkbox placements look like Windows checkbox controls. The check mark can appear or disappear 

inside a box. Corsair checkboxes do not support text labels on the right side of the box. This is done with 

separate text or value placements. 



103 | P a g e  
 

 

 

Corner 

Corner placements are not implemented at this time. 

 

 

Drawing 

Drawing placements are used on screens to show Corsair drawings.  Each placement needs to be linked 

to a drawing. 



104 | P a g e  
 

 

If the drawing is ‘Fixed’ it is shown on the same position on the screen as it was developed in the 

drawing window.  In that case the handle point of the drawing and the handle point of the placement 

are not used.  If it is ‘moveable’ the handle point of the drawing is placed on top of the handle point of 

the placement. 

Ellipse 

Ellipse placements can be used to draw circles if the height and width are the dame. 

 

The primary handle point of an ellipse placement is the center. 

Frame 

A Frame placement is used to mark divisions of other placements into rectangular frame ‘cells’.  The 

number of cells is defined by the frames row and column count values. A row count of 2 and a column 

count of 3 defines a 9-cell frame. 



105 | P a g e  
 

 

The primary handle point of a frame is the top left corner. 

Icon 

Xxx 

 

 

Key 

A Key placement is designed to look like a Windows button.  



106 | P a g e  
 

 

The label text can appear on multiple lines. The simplest method is comma separation.  The developer 

types in 

First Line,Second Line 

If a comma is to appear on the button the line can be marked with quotes. 

“First Line, Continued”,”Second Line, Continued” 

The Font button opens the font selector.  The Default Colors button is used to initialize a suggested color 

combination. 

 

Line 

A line placement can consist of up to 10 segments.  10 segments have 11 handle points. 



107 | P a g e  
 

 

The X and Y positions are the handle points of the line.  They may be adjusted here but it is usually 

easier to adjust them by rubber-banding with the mouse cursor. 

A line with a thickness of 1 can have any of the style options from Sold to Dash Dot Dot.  Thicker lines 

can only have the Solid style. 

Picture 

Picture placements are used to show a picture corresponding to the current value of a tag.  The picture 

selection depends upon the type of the tag.  Currently picture placements are only defined for HOA tags. 

 

 



108 | P a g e  
 

Pipe 

Pipe placements are not implemented at this time. 

 

 

Point Name 

Xxx 

 

 

Polygon 

A polygon is a multi-sided placement that can be created in any position.  It can have as many as 10 

sides.  A 10-sided polygon has 10 handle points. 



109 | P a g e  
 

 

 

Rectangle 

A rectangle is a 4-sided placement that is aligned straight up and down on the computer screen.  



110 | P a g e  
 

 

The primary handle point of a rectangle is the top left corner. 

Rounded Rectangle 

Xxx 



111 | P a g e  
 

 

The primary handle point of a rounded rectangle is the center. 

Spline 

Xxx 



112 | P a g e  
 

 

 

Tank 

A tank placement is a representation of a barrel-shaped liquid container. A vertical tank stands on an 

end. A horizontal tank is laying on its side. 

 

 



113 | P a g e  
 

Text 

A text placement shows an unchanging text label on the screen. 

 

The nine justification radio buttons control how the text label is arranged around the handle point.  If 

the upper left button is selected the text is shown to the right and below the point. 

Trend 

A trend placement specifies a rectangular region for the computer to display a data trend. 



114 | P a g e  
 

 

 

Value 

A value placement shows varying text on a screen.  The text shows the value of a tag. 

 

The nine justification radio buttons show how the value text is arranged around the handle point.  If the 

upper left button is selected the text is shown to the right and below the point. 



115 | P a g e  
 

Placement Actions 
A placement’s action determines what happens when the operator clicks on it with a mouse or touches 

it on a touchscreen.  The action may also determine when the placement is visible and when it blinks. 

Alarm Action 

The Alarm action must be linked to an alarm. 

 

The status of the alarm controls the placement’s visibility and blink properties.  If the alarm is clear the 

placement is invisible.  If the alarm is unacknowledged the placement blinks. 

Call Action 

The Call action works just like the alarm action except that is must be linked to a call. 

Display Action 

The display action is the simplest action.  The placement is shown if the visibility conditions permit.  It 

cannot be clicked on by the operator. 

Entry Action 

 

xxxx 

I/O Jump Action 

 

xxxx 

Log Jump Action 

 

xxxx 

Source Comms Action 

 



116 | P a g e  
 

xxxx 

Quick Trend Action 

 

xxxx 

Screen Jump Action 

The Screen Jump action is used to create a placement that the operator can click on to change screens. 

Sheet Jump Action 

The Sheet Jump action is used to create a placement that the operator can click on to open a sheet. 

Task Action 

The Task action specifies a task that the computer will perform when the operator clicks on the 

placement.  There are several options for the task.  Each one is described in the Designer manual.  Some 

tasks require specifying a tag.  Some require a script.  Some require a constant value. 

Trend Jump Action 

The Tend Jump action causes the computer to open a trend viewing window when the operator clicks on 

the placement.  The developer must specify the jump destination. 

 

In simple situations the ‘Jump Trend’ is the object of the jump.  It is possible to select the object from a 

set of trends using the value of a Corsair triplet. 

Door Action 

This action links a door to the placement.  It is only available on corrections versions of the program. 



117 | P a g e  
 

 

Clicking on the placement ‘hooks’ the window to the placement.  At that time the placement’s hook 

code values are transmitted.  The operator can see his F1-F4 keystroke options on the status bar on the 

bottom of the screen. 

When this action is used for a placement like an ellipse a color list can be specified.  If no tag is tied to 

the list the color selection comes from the status of the door.  When it is unsecure the 0 (zero) colors are 

used.  When it is secure the 1 (one) colors are used.  The same thing is true for drawing and icon lists.  In 

each case if the list is indexed by a tag the value of that tag is used instead of the door status.  This 

makes it possible to have more than two items in the list. 

Door Command Action 

This action enables the operator to execute a command for a door.  It is only available on corrections 

versions of the program. 

 

The developer must specify a door and which command to execute.  The available commands emulate 

the F1, F2, F3, F4, or ‘E’ key. 

Developing User Sheets 
The ‘Edit’’More’’Sheets’ menu option opens the development sheet that creates user sheets.  After a 

sheet record is created a number of rows and columns must be entered.  Zooming on the sheet record 

opens an operator view of the sheet.  If development is turned on the developer can start to define the 

contents of the sheet’s cells. 

The first set is to put a label on top of each column.  Arrow to a cell on the column and press the ‘L’ key. 



118 | P a g e  
 

 

Labels can be static or dynamic.  A static label is fixed text that does not change.  A dynamic label comes 

from the value of a tag. 

[Note – as of this writing labels can only be static] 

Sheet cells are identified with designations that use a letter for the column and a number for the row.  

Starting at the top left of a sheet the cells are: 

A1 B1 C1 D1 

A2 B2 C2 D2 

A3 B3 C3 D3 

A4 B4 C4 D4 

If the ‘Development’ menu option on a sheet is checked the cell designations are shown for all blank 

cells. 

The contents of a cell are edited by arrowing to the cell and pressing ‘F7’ or ‘Z’ to zoom. 



119 | P a g e  
 

 

The definition of a cell includes a type.  The radio buttons on the top of the window set this type.  It also 

includes a place near the bottom to enter a repeat count number.  If the repeat count is zero the 

definition only applies to that cell.  If it is nonzero the definition also applies to that many cells 

immediately below it.  A definition with a repeat count of 4 applies to a total of 5 cells. 

A ‘blank’ cell has no contents.  Blank cells cannot have a repeat count. 

A ‘text’ cell requires the developer to enter a text label.  This label is what will appear in the cell.  If there 

is a nonzero repeat count each of the repeat cells will show the same label. 

A ‘constant’ cell requires the user to enter a number.  That number will appear in the cell.  If there is a 

nonzero repeat count numbers will appear in the repeat cells.  Each cell uses a number that is equal to 

the cell above it with the shift value added.  If the constant is 2, the repeat count is 4, and the shift is 3 

the 5 cells from top to bottom will read 2, 5, 8, 11, and 14. 

A ‘tag’ cell is used to show the value of a tag.  



120 | P a g e  
 

 

Insert more stuff here 

 

A ‘Line’ cell contains a horizontal line.  Line cells are used to divide sections of the sheet. 

Creating I/O Modules 
 

Xxxxxxx 

 

Developing with Corsair Blocks 
 

Note – custom program blocks are not implemented at this time! 

The Corsair program uses program blocks to perform calculations on tag data. A block is defined in one 

place. Each time that the block is used is an ‘instance’ of that block. A change in the definition of a block 

applies to all instances of that block. 

Blocks come in two types, standard and custom. A standard block comes with the Corsair program. 

Standard blocks cannot be changed by the Corsair developer. Custom blocks are blocks that can be 

defined and changed by the developer. 

Standard blocks must be installed into Corsair application before they can be used. When the 

development level is set to ‘administrator’ the Tools/Expert/Block menu options leads to a window with 

two lists. The left-side list has the currently installed standard blocks. The right-side list has the currently 

configured custom blocks. Standards are installed with the Standard/Install menu option. The standard 

block list must be empty before this installation can occur. This can be done from the ‘Standard/clear 

and Install’ menu option. The CAP Corsair application file must be saved after standard blocks are 

installed. 

When a new version of the Corsair program is released the database checking utility will check to see if 

the installed standard blocks match the new version. If they do not match a system error will prompt the 

developer to clear and install the standard blocks again. This does not require any other changes to the 

users application file. 

Custom blocks are created using normal sheet-style editing of the custom block database. This is done 

with the Edit/More/Custom Blocks menu option. Pressing the ‘F4’ (create key) inserts a new block 

record into the database. There are 5 zoom fields associated with each custom block. They are used for 



121 | P a g e  
 

block variable definition, block parameter definition, block initialization code, block forward code, and 

block reverse code. 

The block variable definition window allows the developer to enter a purpose for the block. Each block 

can have up to 10 internal variables named ‘VA’ through ‘VJ’. These variables are local to each instance 

of the block. They are not global. Each time a block instance is created it has its own copy of these 

variables that no other block can access. Variable definition includes a size for variable. If it is assigned a 

size of ten it is an array with ten values using indexes from 0 through 9. Each variable also has a type, 

which are the same as those used by Corsair tags. A data format is used for some tags and a string 

length is used for some tags. 

There are a maximum number of bytes of data that can be used for block variables. It is shown on the 

bottom of the block variable definition window along with how many total bytes the configuration uses. 

If the total exceeds the maximum the variable configuration must be changed. 

The block parameter definition window allows the developer to define parameters that are used by the 

block. The ‘main’ parameter is the tag that the block is assigned to. It can get a label. The 10 parameters 

that are assigned with a block instance are called ‘PA’ to ‘PJ’. A descriptive label can be put on each 

parameter. Each parameter also needs a type and sometimes a format. 

Sometimes a block may need more data space than what is available with internal block variables ‘VA’ 

through ‘VJ’. Tags can be sized as very large arrays and then assigned as block parameters to solve this 

problem. A different tag may need to be created for each instance of the block. Use of the block 

variables whenever possible simplifies the development task and avoids unintended data collisions. 

The code for each block is divided into 3 different sections, Initialization, Forward and Reverse. 

Initialization code is executed once a short time delay after the Corsair program starts interface 

operation. After the initialization code has been executed for each block the computer continuously 

executes the Forward code. The Reverse code is executed once each time that the operator enters a 

value into a tag that has a block assigned to it. 

Most standard blocks do not have any code that the developer can see. Their code is contained in the 

Corsair program in a compiled form. 

The window that is displayed from the Tools/Expert/Block menu option allows the developer to zoom in 

on any of the 5 zoom fields for any standard or custom block. Configuration of standard blocks cannot 

be changed. The Standards/Clone to New Custom menu option on this window is used to clone a 

standard block to anew custom block. It can then be modified just like any other custom block. 

Standard or custom blocks can be assigned to a tag, alarm, or call tags. The tag must be a memory tag – 

it cannot be resident on a PLC or on a device(dave read this line). Memory tags can be displayed by 

picking the Edit/Data/Alarms followed by View/Local shows alarms that can be the result of block 

calculations. The same thing is true for calls. 



122 | P a g e  
 

Let’s assume that a PLC has a 5 temperature values that are in Centigrade degrees. The interface needs 

to display them in Fahrenheit. The ‘MC Plus B’ standard block was designed for this purpose. The first 

thing to do is install standard blocks into the database. The Tools/Expert/Blocks window should show 

that the standard has been installed. The next step is to create a communication Driver record that is 

the proper type for the PLC. This is done under Edit/Data/Drivers. Creating the driver gives the 

developer a zoom option for PLC’s. Zooming into this allow creation of 5 tags. These tags represent the 

raw vales in Centigrade degrees. Each of these tags should get a PLC address that is usable by the driver 

to read in the data. 

The ‘MX Plus B’ block is not installed on the PLC raw value tags. 5 more tags must be created for the 

scaled Fahrenheit values. This is done by going to Edit/Data/Devices and creating the tags. These tags 

are computer-memory and not PLC resident. Near the right side of the development sheet there is a 

field named ‘Block ID’ The tag ‘MX Plus B’ should be typed in here. If this name exactly matches the 

name of either an installed standard or custom block an instance of the block is created. The two zoom 

fields to the right of the Block ID field pertain to this instance of the block. They are for block parameter 

assignment and block variable monitoring. 

The Block Parameter Assignment window is used to define the tags that one instance of the block uses. 

Labels for the 10 parameters are shown. Each parameter can be assigned either a constant or a tag. In 

this example the PA parameter corresponds to the input to the block. It gets the tag of the raw 

centigrade value. The PB parameter sets a constant value of 1.8. The PC parameter gets a constant value 

of 32. 

The block parameter assignment window has a ‘Details’ button that lets the programmer see an 

unchangeable summary of the configuration of the block parameters. 

The block variables monitor window allows the developer to see current values of the variables inside a 

block instance. The top of the window has 10 radio buttons for block variables VA through VJ. Variables 

that have been defined to have a size of zero in the block configuration are grayed-out. Selecting a radio 

button causes a listing of the values of the indexes of the variable to appear. The type, data format, and 

string length of the variable are also shown. 

The block variables monitor window has a ‘Details’ button that lets the programmer see an 

unchangeable summary of the configuration of the block variables. 

The Corsair Select and Replace System 
Corsair includes a system that the developer can do to speed up many of the tasks that are involved 

with making a model file.  The Select and Replace system is a way of manipulating the ID text on 

database records.  It is especially valuable when there are similar elements in the database, like a facility 

with several identical buildings.  If the developer understands how to use Select and Replace and does 

the proper planning, he has very little work to do after he has finished the first building.  The key is to 

make sure that the labels used for record ID are compatible with Select and Replace. 



123 | P a g e  
 

The system usually starts with the developer entering in 3 pairs of Select and Replace entries.  Each pair 

is called a ‘rule’. 

A Select entry describes a pattern for a label.  When a label is compared to a valid Select entry the 

computer can decide if the label matches that entry.  A data source may have 100 tags on it.  73 of them 

might match the Select entry. The remaining 27 wouldn’t match it. 

A Replace entry describes a pattern to change a label.  For each tag that matches the Select entry of a 

rule the computer will change the tag according to the pattern of the Replace entry.  A complete 

operation usually involves 3 rules. 

Rule 1   Rule 2   Rule 3 

Select 1   Select 2   Select 3 

Replace 1  Replace 2  Replace 3 

For each label that is in the specified set the computer first goes to Rule 1.  It checks for a valid Select 1 

entry. If the Select 1 entry is invalid it goes on to Rule 2 and checks for a valid Select 2 entry. 

If the Select 1 entry is valid the computer checks to see if the label is a match for Select 1.  If it is not a 

match it goes on to check the validity of the Select 2 entry. 

If the Select 1 entry is a match the computer checks to see if the Replace 1 entry is valid.  If it is not valid 

that label is done and left unchanged.  If the Replace 1 entry is valid the computer does the replacement 

specified by the rule and that label is done. 

Most of the windows that use the Select and Replace system show the developer a ‘Can’ and ‘Can’t’ 

count before he activates the rules.  This allows him some opportunity to evaluate if the rules will do 

what he wants them to do. 

All Select and Replace rule entries consist of at least one section.  An example Select is the string ‘abc’.  

This Select has one section containing 3 characters.  It is an example of a ‘literal’ section.  The label must 

match the literal section.  Corsair uses case-insensitive selection.  That means the following labels will 

match this Select. 

‘abc’  ‘Abc’  ‘ABC’ 

The system uses 6 special characters in the Select and Replace entries.  They are: 

Vertical Bar  | 

Asterisk   * 

Question Mark  ? 

Number Sign  # 



124 | P a g e  
 

Caret   ^ 

Tilde   ~ 

It is possible to use these characters in Corsair ID labels but the practice is strongly discouraged.  

The first special character is the bar.  It is used as a section divider.  Every entry has at least one section.  

The Select ‘abc’ is equivalent to the Select ‘a|b|c’.  The first select has one section with three characters.  

The second select has three sections which each have one character. 

If the Asterisk character is the first character in a section it serves as a ‘wild-card’ that represents a 

group of characters.  The group could be empty or it could be quite long.  The Select ‘A|*’ matches any 

label that begins with the letter ‘A’.  A single ‘A’ by itself matches this Select. 

Rules match up sections between the Select and Replace entries to see how the replace action is going 

to work.   A possible rule could be: 

Select   ‘A|*’    Replace  ‘B|*’ 

This rule would select any label beginning with the letter ‘A’ whether it had anything else after it or not.  

It would change the leading ‘A’ to a ‘B’. 

The Question Mark is used as a single-character wildcard.  It matches exactly one character.  A rule could 

be: 

Select   ‘A|?’    Replace  ‘B|?’ 

This rule selects any label beginning with the letter ‘A’ that is exactly two characters long.  It changes the 

leading ‘A’ to a ‘B’. 

This is another possibility: 

Select  ‘AB|*|?’   Replace  ‘C|*|DE’ 

This rule selects any label that begins with ‘AB’ and has at least one more trailing letter.  The leading ‘AB’ 

is replaced with ‘C’.  Any characters in the middle are unchanged.  The trailing single character is 

replaced with ‘DE’. 

The Asterisk and Question Mark characters only count as wild cards if they are the only item in the 

section.  The Select ‘AB*|?E’ has no wild cards.  It will only match the string ‘AB*?E’.  A special case 

occurs when the developer wants to have a literal section consisting of only an Asterisk or Question 

Mark.  This is signified by a repeated character. 

Select  ‘AB|**|CD|?’ 

This select matches labels beginning with ‘AB*CD’ followed by exactly one more character. 



125 | P a g e  
 

The Number Sign is used to signify a section with a number.  The number cannot contain plus or minus 

signs or a decimal point. 

Select  ‘AB|#|*’ 

This Select will match ‘AB0’ or ‘AB2789Z’.  It will not match ‘ABC29Z’. 

The Number Sign must be the first character in the section to signify a number – otherwise it is part of a 

literal. 

There are additional options for Number sections of Replaces.  These options are not available for 

Number sections of Selects. 

‘#04’  Leading zero pad to get a total of 4 digits 

‘#+3’  Add 3 to the existing number 

‘#+’  Add 1 to the existing number 

‘#-2’  Subtract 2 from the existing number 

‘#-‘  Subtract 1 from the existing number 

‘#05-1’  Subtract 1 from the existing number and leading zero pad to get 5 digits 

‘#03+’  Add 1 to the existing number and leading zero pad to get 3 digits 

Leading zero padding is used to force numbers to be a fixed length.  It guarantees that labels will be 

alphabetically sorted in the proper order. 

Empty sections can be used to remove portions of labels. 

Select  ‘A|?|*’    Replace ‘A||*’ 

This rule takes any 2-character or longer label that begins with A and removes the second character. 

Empty sections are not allowed in Select entries. 

The Caret character is used as a ‘Command’ indicator in a section of a Replace.  The next character 

determines the type of command. 

^L  Lower Case 

^U  Upper Case 

^M  Mixed Case 

^I  Insert 



126 | P a g e  
 

The L, U, M, and I can be in upper or lower case.  Upper is the preferred syntax. 

For the Lower, Upper, or Mixed case commands only the Caret and the letter appear in the section.  The 

computer does the desired case correction on that section. 

An insert command section consists of the Caret, the I, and some literal text. The text is inserted 

between two other sections.  This is an exception to the rule that the number of sections in the Select 

entry must equal the number of sections in the Replace entry.  Insert sections to not have corresponding 

sections in the Select entry. 

Numbers may be inserted as text like in the section ‘^I2’. 

The Tilde character is reserved for future use. 

Database Record Import and Export 
A Corsair developer may need to create a large quantity of tags, alarms, calls, or doors.  It may be more 

efficient to create these database records outside of Corsair using a spreadsheet program.  The data can 

be saved in a CSV (comma separated variable) formatted file.  The file data can then be imported into 

Corsair.  The opposite operation is also possible where data is exported from Corsair to a CSV file. 

The format of the file will vary based upon the record type.  A file of tags has different column types 

than a file of doors.  The developer can see the format for the files from the ‘Help’’Program 

Information’’CSV Fields’ menu option.  This opens the Import/Export Fields window. 

 

Every field of each type of file is described by a tree view here.  The tree can be printed for paper 

documentation. 

Corsair reserves the right to change the file formats as new features appear in the program.  A data file 

produced for one version of the program may be incorrect for another version.  In each case the 

Import/Export Fields window will show what is correct for that version of the program. 



127 | P a g e  
 

Importing a data file involves the ‘Edit’’Model Data’’Imports’ menu path. 

 

The CSV button on the left side opens a file name picker control that can be used to put the file name in 

the edit control on the center of the window.  At that time the buttons for Tags, Alarms, Calls, and Doors 

will appear.  The developer must select the button that is correct for the data in the file.  It opens the 

CSV data import window. 

 

This window allows the developer to see the data from the file before he elects to create the records.  

Fields that have an error are shown in color to warn him of potential problems with the file.  Ideally all 

of these errors are resolved before the import happens.  Often the answer is to edit the file in the 

spreadsheet software and save the results.  Closing and reopening the CSV Data Import window will 

cause it to try the new version of the file. 

Some potential import errors are avoided by changing data in the Corsair model database.  The 

developer may be trying to import a tag named ‘Tank Level’ when Corsair already has a tag by that 

name.  He cannot edit the file data from the window but he can leave it open while he changes the 

name of the existing tag to ‘Old Tank Level’.  The ‘View’’Recalculate Errors’ menu option will cause 

Corsair to recheck for the name collision. 



128 | P a g e  
 

When the developer wants to import the record data he picks the ‘Import’’Import’ menu option.  If 

there is no problem the CSV Data Import window will close automatically.  Problems will result in an 

error message. 

Corsair’s default behavior is to not do the import if any problem exists with the file data.  Advanced 

developers can override this and import from imperfect data.  This is done by adjusting two menu 

options that are under the ‘Import’ menu item. 

The first option is the ‘Warnings’ option.  It defaults to ‘Abort Import’ where nothing is imported if any 

kind of warning exists in the data.  The ‘Discard Line’ option causes Corsair to not import from any line 

that has a warning on any of its fields.  The ‘Ignore’ option instructs Corsair to accept every line and do 

the best that it can with the imperfect data. 

One type of warning is when there is an item (Tag, Alarm, Call, or Door) already in the Corsair model 

database that has an ID name identical to a line of the import file.  Special control options apply to these 

‘Duplicate’ warnings.  The ‘Abort Import’ default behavior is to not import anything if a duplicate exists 

anywhere in the file.  The ‘Discard Line’ option causes Corsair to not import from any line that has a 

duplicate.  The ‘Replace’ option causes Corsair to import the new record, change all links from the old 

record to the new one, and then delete the old record.  The ‘Append’ option causes Corsair to import 

the new record.  The developer will then have to manually resolve the name collision. 

Exporting data to a file involves the ‘Edit’’Model Data’’Exports’ menu path.  Exported files will contain 

more fields than what are required for import. 

CSV Data Import 
Data is frequently kept in disk text files in a CSV – comma separated variable – format.  The file consists 

of a number of ‘rows’ which may also be called ‘records’.  Each row has one or more columns which are 

also called ‘fields’.  Typically each item is surrounded by double quote marks and the columns are 

separated by commas.   An example of the contents of a CSV file is: 

“R1C1”,“R1C2”,”R1C3”, 

“R2C1”,“R2C2”,”R2C3”, 

“R3C1”,“R3C2”,”R3C3”, 

CSV data import is a tool within the Corsair program that is used to import data from a CSV file into 

Corsair tags.  The tags can be memory tags in the Corsair database or they can be located on a data 

source like a PLC.  The tool can do import for as many as three tags at one time.  The operation can be 

performed multiple times on different columns of the same CSV file to load many tags. 

The first step before doing CSV import is to verify that the developer has administrative privileges.   The 

status bar on the main Corsair windows should show ‘Dev: Admin’ on the lower right corner.  If it does 

not, the level can be changed through the Users/ Change Level menu option. 



129 | P a g e  
 

The next step before data import is creation of all the necessary tags and locating them on the correct 

data sources with correct addresses.  Most types of data sources can be used but frequently these tags 

will be created on a Modbus Memory Map data source.  The imported data for a memory map is packed 

into a binary file where Corsair can access it far more efficiently than it can access a CSV file. 

After the tags are created the developer must run the Corsair interface.  This means that the interface 

check box is checked so that Corsair can perform whatever communications tasks are required by the 

import. 

Now the developer must view the contents of the CSV file using the Corsair CSV file viewer.  Pick View/ 

Files/ CSV File Viewer from the menu.  A dialog box appears that allows selection of a file.  When the file 

is open the developer can see the data items that are in it and how many rows and columns are present.  

One data item is shown in inverse (reverse) colors.  This item is in the ‘current’ row and column position.  

The arrow keys can be changed to the current position.   Typically the developer will arrow to the first 

item that he wants to import.  He must not have the View/ Auto Refresh menu option checked. 

The Edit/Import menu option is used to open the CSV data import window.  This window has group 

boxes containing controls for the import of data into 3 different tags.  Below them on the lower left is a 

button that is labeled ‘Import’ if an import is ready.  If it is not ready it shows an error number that you 

can click on for an explanation of the error.  The current row and column number of the CSV Viewer and 

the row and column totals are shown in boxes along the bottom of the CSV Import window. 

Data Import Tag Controls  

The first step to set up a tag for import is to check the ‘Tag’ check box.  Next the ‘Find’ key is used to 

select the name of a tag into the next box.  This box starts out with two question marks.  It changes to 

the tag name as soon as one is found.  The button to the right of the tag name is blank unless there is an 

error in the import setup of the tag.  If this is the case an error number is shown and clicking on the 

button brings up an explanation of the error. 

The ‘Current’ checkbox is only offered on the first tag of the three.  It is checked if the data import of the 

tag is to begin at the current row and column position on the CSV file viewer.  The row and column 

boxes for the tag cannot be entered if this option is checked.  Unchecking it allows the row and column 

to be entered like with the other 3 tags. 

The ‘Index’ number is the index of the first element of the tag that is to receive import data.  If the tag 

has an array size of 20 valid index values can range from 0 to 19.  Most imports will use zero values for 

the Index entry. 

The ‘Count’ number is how many consecutive indexes of the tag will be imported starting at the entered 

row and column position and working down the column. 

Assume the following entries: 

Row 2   Colum 3   Index 4   Count 3 



130 | P a g e  
 

Corsair will do the following import: 

Row 2 Column 3 to index 4 of the tag 

Row 3 Column 3 to index 5 of the tag 

Row 4 Column 3 to index 6 of the tag 

Corsair will check all row, column, index, and count values for validity before an import can begin with 

errors showing on the buttons on the CSV Import window. 

Data Import Type Conversion 

The raw data coming in from the CSV file has a data type of string.  This is converted to the proper type 

and format for the tag.  In some cases this conversion may not yield the proper results.  The ‘Input Type’ 

check box on each tag group allows the developer to select a tag type and format for an intermediate 

result.  When it is used the data is converted from the string that is in the CSV file to the type and format 

of the intermediate result and then converted to the type that is required by the tag. 

CSV Data Import for the GPS Markers Block  

Data import is frequently needed for the GPS Markers Block.  The CSV file data may be in three columns 

– latitude, longitude, and a name for each marker.  This data is imported into three tags that are located 

on a Modbus Memory Map file.  If there are 100 markers the latitude and longitude tags should have a 

size of at least 100 and the name string tag should have a size of at least 101.  The Latitude and 

Longitude tags should be 64-bit integers with Latitude and Longitude formats.  The Marker names tag 

should be a string with a length greater than or equal to the longest string to be imported.  Each of the 

tags should have a proper Modbus address and the Memory Map data source should be set to ‘Real? 

Yes’ before the import is attempted.  Since imports must be performed with the Interface running 

Corsair will write the data to the memory map file. 

It must be noted that the GPS marker name tag uses index 0 for the marker name if no valid marker is 

found.  Index 1 of the name tag corresponds to the first latitude and longitude position.  Because of this 

the Index entry for the import of the latitude and longitude tags should be zero and one for the marker 

names tag. 

The latitude and longitude may be in decimal degree format in the CSV file.  If this is the case the Input 

Type option needs to be checked with a suggested type of Double Float and a format of -3.7.  Corsair will 

convert the string from the CSV file to a Double Float and then to its internal latitude and longitude 

format. 

CSV Data Import for the GPS Areas Block 

The data import requirement for the GPS Areas block differs from the GPS Markers block since the 

latitude and longitude tags are grouped into 4 indexes for each area.  If there are 100 areas the latitude 



131 | P a g e  
 

and longitude tags would have a size and an import count of 400 starting at index 0.  The string tag 

would have a size of 101 and an import count of 100 starting at index 1. 

DXF Import 
DXF files are generated by computer drafting programs.  The Corsair program has a limited ability to 

read .DXF files and translate them to drawing placements.  The developer imports the DXF into a DXF 

tree format.  He can then isolate sections of the drawing to create drawing placements.  The tree data 

can be saved in a separate file to avoid having to import a second time at a later date.  DXF import works 

best on a computer with more than one monitor. 

DXF import starts at the import window. 

 

The DXF button is used to browse for DXF files to be put in the edit box.  If a file name is entered the 

‘Lite’ and ‘Full’ buttons will open the file for import.  The ‘Lite’ button opens the DXF expert without 

loading the tree control.  The ‘Full’ button opens the DXF expert using the tree control.  DXF import can 

take a lot of time with several minutes possible for large files.  For an initial import of a large file the Lite 

option is recommended.  The data can then be saved as DXF tree data. 

If the developer already has a DXF tree data file he can click on ‘Lite’ or ‘Full” with no name in the edit 

box.  After he gets to the DXF expert window he can then load the tree file. 



132 | P a g e  
 

 

The DXF expert window consists of a tree control on the left side and other controls on the right side.  

The tree control will be empty if the window was opened with the ‘Lite’ option. 

Every DXF file consists of a number of elements called ‘Entities’.  They are listed in the Entities section of 

the tree control.  Corsair cannot work with all the possible types of DXF entities.  An entity that Corsair 

cannot use is an ‘Undrawable’ entity.  Each drawable entity can be ‘Enabled’ or ‘Disabled’.  Enabled 

entities are used to create Corsair drawing placements.  Disabled entities are kept in the tree data but 

are not used for placements. 

The developer can preview imported DXF data using the ‘View’ menu options.  If he picks ‘View’’All’ he 

can see all of the drawable entities that fit onto the preview window.  Four numbers are used to scale 

the preview window.  They are LLX (Lower Left X), LLY (Lower Left Y), URX (Upper Right X), and URY 

(Upper Right Y).  Based upon these 4 values entities can be On-Screen and seen in the preview window, 

Off-Screen and not seen, or Partial and partially seen.  The DXF expert window shows totals for each 

type. 

On the preview window disabled entities will show in a light gray.  Other entities will show in one of the 

4 import grouping colors.  These are four colors that can be used by the developer to mark different 



133 | P a g e  
 

groups of entities.  They are Black, Red, Green, and Orange.  These colors are not used for Corsair 

drawing placements that are created from the DXF expert.  They are only used to segregate entities as 

the developer works with the DXF tree to create drawings.  The color that is normally used for created 

placements is shown on the bottom right side of the expert window.  The ‘C’ button is used to open a 

color selector to aid the developer in finding the color that he wants. 

While the developer is looking at the preview window he can use the L(eft), R(ight), U(p), and D(own) 

buttons to change the scaling numbers that define what he sees on the window.  The Zoom In and Out 

buttons perform those functions.  Wide, Thin, Tall, and Short should be used with some more caution as 

they are more likely to distort the horizontal and vertical aspect ratio of the drawing entities.  With most 

Corsair systems the drawings are not to scale and the developer is free to adjust them for the best 

appearance. 

The Preview window comes in 6 different versions.  The Result version shows what the proposed Corsair 

drawing will look like.  It does not show disabled elements.  The other versions of the preview window 

show disabled elements in light gray.    The developer can preview all of the grouping colors or only one 

of them as desired. 

The Target menu item controls how the drawing placements are created.  The developer can select 

using all entities, or just the entities from one of the color groups.  In every case undrawable and 

disabled entities are not used.  The expert can create a new Corsair drawing.  He can also replace the 

current contents of an existing drawing or append to the contents of that existing drawing.  The line 

color for the imported placements will be the color that is entered at the bottom of the window or 

(Future) color information from the DXF file. 

The Target button is used to open a Corsair selector to enter an existing drawing for a replace or append 

operation.  The button on the bottom below the target button is used to perform the operation.  The 

View/Target menu option lets the operator see the drawing before and after the placements are 

created.  The View/Drawings menu option opens editing of drawing records.  The View/File Text menu 

option opens the original PDF file to allow the operator to explore it’s contents. 

The develop can select an entity from the tree control by clicking on it.  He can then eliminate (delete) it, 

set its grouping color, and enable or disable it from the buttons on the right side.  The selected entity 

will flash on the preview screen.  Another option is to flash all entities on the preview screen that are on 

the same DXF layer as the selected element. 

Many menu options are available to set options on multiple entities at the same time.  Corsair does not 

allow drawing placements to be created if any of them are off-screen.  The ‘Visibility’’Disable’’Off-

Screen’ menu option can take care of these situations. 

The ‘Scale’ menu has options to change the scaling numbers to fit groups of entities to the Corsair 

screen.  When a drawing is first loaded it is scaled using the drawing extents values from the DXF file.  A 

menu option can return the scalings to these values.  There are orientation options for the imported 

drawing. 



134 | P a g e  
 

If a developer is looking at a portion of a drawing with a desired scaling and orientation he can mark that 

position with the ‘Remember As’ options.   The values will be returned with the ‘Go Back to’ options. 

The ‘Tiny Moves’ menu item is to switch the image moving and zoom buttons to a much finer resolution 

for precise positioning of the imported image. 

Corsair Micro-CAPs  
A CAP file is a CorsairHMI application database. It may contain several inter-linked databases of drivers, 

screens, tags, and so on. Most CAP files contain sufficient information that they provide a complete 

database for the Corsair program to run a customer’s application. Micro-CAPS are also CorsairHMI 

application database files. They use the exact same file format and file extension as any other 

CorsairHMI CAP file. They may be complete runnable applications but generally they contain far less 

information. A Micro-CAP may contain only a single screen and its placements, or just a drawing, or just 

a PLC with a number of tags on it. The definition of a Micro-CAP is that it is a CAP that was ‘extracted’ 

from another CAP. Extraction is the process of removing database records to create a smaller file that 

contains a sub-set of the data that was in the original file. The primary purpose of Micro-CAPS is to 

provide the CorsairHMI developer with a library of database components that he can combine to serve 

as a basis for his application. 

Database Extraction 

Database Extraction is the process of deleting records out of a CorsairHMI CAP to prepare it to be saved 

as a Micro-CAP for library purposes. One way that this can be done is manually with the developer 

deleting records as desired. He then saves the data using the ‘Save As’ menu option. This approach only 

works well with small databases. The developer must be careful not to use the ‘Save’ menu option as 

that would result in the extracted database being also stored in the original file. There is a developer 

preference to enable automatic saving of the CAP file when the CorsairHMI program exits to the 

operating system. This preference should be shut off when doing manual database extraction. Corsair 

can be directed to do the reduction with the entry of an extraction specification. This specification tells 

the program what to keep (and what to eliminate) in the database. Database Extraction is done using 

the CorsairHMI application transfer window. 

The Application Transfer Window 

The application transfer window is used to move data between CorsairHMI applications and the 

computer’s disk drive. Transfers can be across CorsairHMI memory, from memory to disk file, from disk 

file to memory, or from disk file to disk file. 

 To get to the application transfer window CorsairHMI must be set for administrator development. The 

developer clicks on Setup/Application List. He must then decide if the source application is CorsairHMI 

memory or a disk file. If the source application is memory the developer must arrow up or down to 

highlight the desired source memory.  The then clicks on Edit/Transfer from Memory. If the source 

application is a disk file the developer clicks on Edit/Transfer from Disk. 



135 | P a g e  
 

The top group box of the transfer window deals with the source application. If the source is memory the 

number and nickname of the source application is shown at the top. If the source is a disk file a browse 

button is shown to help the developer to find the file. 

Once everything is correct on the source application the developer moves on to specify the destination 

application. The three options are Same Place, Memory, and Disk. Same Place means that the result of 

the transfer will end up in the same place (memory or disk file) where it started. This option is 

frequently used for screen resolution changes. Memory means that the transfer results will go into 

Corsair application memory. A memory number from 1 to 100 must be entered by the developer. Disk 

means that the transfer results will go to a disk file. The developer can type in a file name. The browse 

button is an aid to find files. 

The type of transfer action must be specified. The options are Verify Blank Destination, Replace 

Destination, and Merge with Destination. 

 Verifying a Blank Memory Destination means that the destination application memory must be empty 

or the transfer will not occur. Verifying a Blank Disk Destination means that the destination file must not 

exist on the disk or the transfer will not occur. 

Replace Destination means that the destination memory contents will be replaced with the results of 

the transfer. If it is used with a disk file the old file contents will be lost. If the disk file does not exist a 

new one will be created.  

Merge with Destination means that the transfer results will be merged in with what is already in the 

destination. Merging with a memory destination requires a valid application in that memory. Merging 

with a disk destination requires an existing valid disk destination file. 

Transfer Option: Display Resolution 

The developer may wish to change the display resolution of the source CorsairHMI database as part of 

an application transfer. Micro-CAP library files containing graphical database records (screens or 

drawings) will have been developed assuming a particular screen resolution. This resolution may have to 

be changed during Micro-CAP import to match the target computer system.  

Display resolution changes will always require manual adjustment of graphic items to make the images 

look right at the new resolution. 

Transfer Option: ID Prefix  

A developer may wish to prefix all ID names in the source CorsairHMI database as part of an application 

transfer. 

Transfer Option: Database Extraction  

Database Extraction can be done during application transfer to form a Micro-CAP. 

Corsair Database Extraction Functions  



136 | P a g e  
 

The following automatic extractions are possible: 

• Reduce to all screens without tags 

• Reduce to all screens keeping the tags 

• Reduce to a single screen with or without tags 

• Reduce to just drawings 

• Reduce to a single drawing 

• Reduce to just the icon database 

• Reduce to a single icon 

• Reduce to a single driver with its PLCs and tags 

• Reduce to a single PLC with its tags 

• Reduce to a single tag 

Other extractions must be done manually by the developer. 

Micro-CAP Import 

A Micro-CAP is imported into a larger application through the Corsair application transfer window. 

Usually the Micro-CAP is a disk file. The source is the disk file. The destination is CorsairHMI memory. 

The destination action should be set to ‘Merge with Destination’.  

A Micro-CAP can be imported into an application multiple times. Usually different ID prefixes should be 

done with each import to help keep the data properly sorted and prevent duplicate tag errors. 

Computer Configuration 
Computer Configuration is a file containing a collection of information about what the Corsair program is 

to do.  Multiple Corsair programs on separate computers frequently use the same Model file(s).  Each 

computer uses a different Computer Configuration file.  This enables each computer to know what it can 

and cannot do with the Model data.  This is why the Configuration file is an essential component of 

Plantwide interface.  The default name for this file is ‘Corsair.cfg’.  The full name for this file is usually 

‘c:\corsair\corsair.cfg’. 



137 | P a g e  
 

 

The computer configuration window has several buttons representing different groups of configuration 

items.  The edit control on the bottom of the window tells when the configuration data has been 

changed and needs to be saved using the button on the lower left side of the window. 

Model List Group 
The ’Model List’ menu option opens the window that is used to configure what model files are used by 

the CorsairHMI program.  A model file contains an interface database with tags, graphic screens, sheets, 

alarms, and all the information needed for a complete operator view.  These files typically have file 

names ending with a ‘.cap’ extension.  The normal default file name is: 

C:\Corsair\Corsair.cap 

If the license allows for Multiple-Model operation Corsair can use up to 100 model files at a time.  The 

Model list window has a scrollable list of these files. 



138 | P a g e  
 

 

Each file has a number from 1 to 100.  The Edit menu option or the F2 key opens the window that 

specifies a model. 

 

Each model is specified with a file name and a nickname.  The nickname is what the operator uses when 

he selects which model he wants to see.  If a model is ‘Not Used’ the file name and nickname are forced 

to be blank.  If it is ‘Disabled’ the file and nickname entries remain but the program does not use the file.  

Normal operating models are ‘Enabled’.  A ‘Hidden’ model is loaded and operated by the program but it 

cannot be selected by the operator.  Administrator-level development is required to view a hidden 

model. 



139 | P a g e  
 

 

Sessions Group 

 

Xxxx 

 

 

Desktop Group 

 

The Corsair program can be used on computers with multiple monitors without any special settings.  The 

operator can drag each window to the monitor that he wants it to appear on.  Windows will tend to 

appear on the operating system’s #1 ‘primary’ monitor. 

More options are available when a setting is made on the Computer Properties window Interface tab.  

There is a ‘Desktop Monitor’ number.  This number is the number of the monitor that the Corsair 

Desktop gray screen is to appear on.  In single-monitor systems this number is left at zero.  The Corsair 



140 | P a g e  
 

Multi-Monitor features will be activated when it is set to a nonzero value.  Corsair keeps track of up to 4 

monitors.  If a value of 2 is entered for the Desktop Monitor and the computer properties are saved the 

next time that Corsair is started it will appear on monitor #2. 

Under the Edit/Data/Sessions menu option the developer can enter a screen for each of the 4 monitors 

on the session record.  When the operator of that session clicks on the ‘Run’ button these screens will 

appear in the proper places. 

The Help/About window contains a button that can be used to access a window giving information 

about the monitors that are present on a system. 

The ‘Show Splash Icon’ checkbox is used to display a bitmap in the center of the Corsair desktop 

window.  It must be a file named ‘corsair.bmp’ in the same folder as the Corsair program.  After turning 

on the checkbox and saving the computer configuration it may be necessary to restart the Corsair 

program for the icon to appear. 

 

 

Comms Ports Group 

 

The CorsarHMI program can use a maximum of 20 serial communications ports.  In the future the ‘Port 

List’ button will be used to display what ports are available on the system. 

 



141 | P a g e  
 

The first 4 ports use fixed standard names.  Ports 5 through 20 have developer enterable names.  Each 

port is configurable for baud rate, parity, data bits, and stop bits.  Parity options are none, odd, or even. 

Sounds Group 

 

The ‘Use Sound’ checkbox must be checked for the computer to play .WAV files. The path entry specifies 

where the files are stored. It should end in a slash like ‘C:\cwaves\’. The ‘Force Volume’ option is used to 

adjust the computers volume controls before it plays a .WAV file. The ‘Get Volume’ button copies the 

current settings to the edit entry boxes. 

Startup Options Group 

 

The ‘Run Interface’ checkbox tells Corsair to begin interface operation when the program starts. Another 

checkbox tells it to display the first screen when it starts. 

The ‘Quiet Exit’ option is used when the Corsair program is closed. If it is checked the computer does not 

show the usual warnings about unsaved files. 

Startup Levels Group 

 

The Startup Developer level can be adjusted from ‘None’ to ‘Administrator’.  Typically, it is left at 

Administrator during project development and set to None for normal interface operation after that.  



142 | P a g e  
 

The Startup Operator level can be adjusted from ‘Novice’ to ‘Pro’.  This group only determines the levels 

when the Corsair program starts running.  After that point the levels can be adjusted from the ‘Users’ 

‘Change Levels’ menu option. 

Startup Delays Group 

 

The Corsair program has to do several things when it begins interface operation. Systems differ as to the 

best order for these things to happen. The default settings will work well for most systems. 

Demonstration systems can typically have these delays set to zero for faster startup. 

 

 

Reports Printing Group 

 

When development is shut off the computer looks at the ‘Operator Printing’ checkbox to see if it should 

allow printing.   Default options for Landscape vs Portrait printing and Black and White versus color are 

set here. 

Normal margins leave some margin on each side of the page.  Wide printing leaves narrow margins on 

each side.  Binder printing leaves some margin on the left side of the sheet and very little margin on the 

right side. 



143 | P a g e  
 

Reports Fonts Group 

 

If the three printer fonts are not selected printouts may have very tiny print that is unreadable.  The 

illustration shows a possible suggestion for a starting point. 

Reports SQL Group 

 

The ‘Create SQL Reports’ checkbox is checked if this computer is to be allowed to create repots.  They 

can optionally be saved to a local or global folder location.  The folders are specified as paths.  A 

Windows path should end with a slash, like ‘C:\corsair\local_reports\’. 

The ‘Access Event Logging . . .’ checkbox must be on for the operator to be able to view logged events. 

 

 



144 | P a g e  
 

Web Group 

 

The ‘Host Mode’ selector is what turns on hosting.  There are several options depending on how the 

developer wants the web client login operation to work. 

‘No Web Host Operation’ is exactly that. 

‘Login to Operate and to View’ means that a login is always required.  Operating capability depends 

upon the authority system. 

‘Login to Operate, Bypass to View’ means that anyone can get in without a password but they cannot 

change anything.  If someone logs in the authority system decides what they can do. 

‘Login – Bypass to Operate’ means that anyone can get in without a password or by logging in.  In either 

case the authority system decides what they can do. 

‘No Login –View Only’ means that no login is asked for and there is no operating capability. 

‘No Login – Operate Only’ means that there is no login and the authority system decides what can be 

done. 

The ‘Show Users’ checkbox allows User names to be shown as selectable items on the Web Browser’s 

login page. 

The ‘Host URL’ specification is normally left blank.  A sample entry for a Windows system is shown near 

the entry box.  It is used to apply a specific URL name to the host or to configure the host for a port 

other than the default port 80. 

The ‘Use Ajax’ checkbox is always checked.  It is only left off for special diagnostic situations where the 

browser user wants to see the HTML code that Corsair is sending. 

The next selections determine what image the web browser sees on the initial login page.  The first 

choice is the default Corsair airplane automation.  The next choice is a png file that the developer must 

specify.  The third choice is no image.  The fourth choice of an html file is not available at this time. 



145 | P a g e  
 

The ‘Use REST’ checkbox is checked to tell Corsair to serve data to clients using its HTTP REST protocol. 

This standard is described with the Help-Program Information – Protocol Data – REST option. By default 

the client can read data using GET commands. The ‘REST Put’ checkbox must be checked for data to be 

written with PUT commands.  

Menus Group 

 

These options are for a future capability that is not complete at this time. 

Email Group 

 

The email configuration window is used to control how Corsair sends email messages. The first thing to 

set is the method that it is to use. They include: 

 None – Corsair does not send email. 

 MAPR – Used on a Windows system to interface to an email client program like Thunderbird. 

 DLL – Used on a Linux system. 

 Unencoded – Used on a Windows or Linux system where Corsair accesses a local email server 

using unencoded SMTP protocol. 

The Config File specification us where the Email data tree is stored. A typical entry would be 

‘c:\corsair\emaildata.’ 



146 | P a g e  
 

Each email method requires the entry of different parameters. The ‘Include URL in Email’ checkbox is 

used to tell Corsair to put an address in alarm notification emails. The URL is entered into an edit box 

next to the checkbox. Someone receiving the email could click on this address to open his browser to a 

website. 

The ‘trace’ checkbox is used with the Unencoded SMTP option. If it is checked the data exchange 

between Corsair and the email server will be added to the communications trace window. The trace 

must be set to ‘Ethernet’ and it must be started for this to happen. Viewing the trace may assist in 

troubleshooting email problems. 

The status button opens the email status window for testing email operation. Entries on the email 

configuration should be set with the ‘Accept’ button before opening the status window. 

My IP Group 
A Corsair computer that is connected to the Internet can determine what IP address is used for its 

Internet connection.  This configuration group is used to set up how this determination is done.  It is 

described in the ‘My IP’ section of this manual. 

Passwords Group 

 

There are passwords that are used to set operator and development levels. 

Users Group 

 



147 | P a g e  
 

The Users configuration window is used to setup Corsairs user credential system. This is completely 

separate from the Windows operating system user names and passwords. Corsairs users and passwords 

are kept in a username file. A typical specification for this file is ‘c:\corsair\users_file.’ It is possible to 

enter a specification for both a primary and a backup file. Typically they are on different computers. 

Corsair tried to read the primary file first. If this fails it goes for the backup file. 

A common strategy would be to locate the primary file on a centralized server. Each computer has a 

backup file on its own local hard drive. If ‘Auto Copy’ is checked and Corsair succeeds in loading the 

primary file it will then copy it to the backup location. That way the backup can be kept current to allow 

for a failure in the network communications. 

 

 

Scramble Group 

 

Corsair can display a specialized numeric keypad on the screen in some high-security applications.  The 

positions of the numbers on the screen can change every time the keypad is used so that someone 

cannot recreate the password sequence by watching the touchscreen from a distance. 



148 | P a g e  
 

Style Group 

 

The ‘Use Small Windows’ checkbox is used when the Corsair program is running on a small monitor like 

a Raspberry Pi touchscreen.  Some development functions are shown differently on small monitors. 

Status Height is the height in pixels of the status bar on the bottom of a Corsair graphic screen.  It 

normally uses a text font that comes from the operating system.  The Custom Font checkbox permits the 

developer to select another font.  The Custom Color checkbox permits the developer to select the color 

of the status bar. 

The template font is the font that is used for text on I/O module templates.  The illustration shows a 

suggestion. 

 

MBHR Group 

 



149 | P a g e  
 

The ‘Read Security’ and ‘Write Security’ options are for when the computer is operating as an MBHR 

host.  Write Security defaults to ‘Never Allow’.  If it is enabled with ‘Allow All’ the MBHR remote 

computer can write data to the host which can then write it to a PLC. 

The remaining parameters are for MBHR remote operation.  Read Idle Pause determines the time 

between requests from the remote.  Putting a time of 0.05s here helps to keep from flooding the master 

with requests. 

The Reply Time Out time is how long the computer allows for the host to reply.  A host over the Internet 

may need a longer time-out than one on a local computer.  10 seconds works well in many cases. 

The Connect time is how long the computer allows for the host to respond when it initially requests a 

connection.  It should be as long or longer than the Reply Time Out.  20 seconds is a possibility. 

Connect retry is the time after a failed connect request before another connect is tried. 

The pipeline count can vary from 0 to 16.  0 or 1 are for no pipelining of communications requests.  

Excessive pipeline counts can cause performance problems with the Corsair host, especially with Corsair 

extended Modbus protocol. 

Serial Group 

 

This group is used to assign serial ports for some configuration options.  If Corsair is using Streaming 

Serial data security either transmit or receive serial ports are specified here.  A maximum of 4 ports can 

be operated at the same time. 

Corsair can operate in a serial MBHR Host mode using the Modbus RTU protocol.  It requires one serial 

port. 

Corsair can act as a ANSI-compatible serial terminal if it is started with a special command line 

parameter.  This requires a serial port. 



150 | P a g e  
 

Help Files Group 

 

Xxx 

 

Xxx 



151 | P a g e  
 

 

Xxx 

 

 

 

EDS Group 
This is a future option that is not active at the present time. 

 

 



152 | P a g e  
 

Shutdown Group 

 

Windows Corsair can shut the computer down and optionally reboot it automatically.  It will run for at 

least the specified minimum run time.  If no additional conditions are checked it will shut down after 

that time.  Up to 3 additional conditions can be added as requirements after that time.  Windows may 

have to run Corsair ‘As an administrator’ for this option to work. 

Developer Preferences 
The ‘Setup’ ’Preferences’ menu option opens the developer preferences entry window. 



153 | P a g e  
 

 

The program can be individually configured to automatically save Models, Developer Preferences, and 

Computer Properties when it is closed. 

The ‘Record Sort’ options enable a background sortation process for records like tags, alarms, calls, and 

register blocks.  Some developers may prefer to leave it shut off so that records do not ‘jump around’ as 

data is entered.  One option is to turn both of these items on, do a complete thinker cycle, and then turn 

them both off. 

The ‘Highlight Row’ checkbox is used for sheet-style Corsair database development.  It causes the 

computer to highlight the entire record, not just the current field.  The color is adjustable.  The 

illustration has a suggestion. 

Database error checking goes on constantly as a background process.  Advice, Alerts, and Warnings can 

selectively be ignored if the developer desires. 



154 | P a g e  
 

Printing the Manual 
The Corsair manual is a collection of printouts that are generated by the Corsair program. Each printout 

is considered to be a chapter of the manual. The Corsair developer can select what chapters are to be 

included when he prints the manual. He can select many options for the manual including whether or 

not to include a main index of the chapters, whether to print indexes with the chapters, page numbering 

options, and so on. 

Manuals are printed for different purposes with different audiences. Engineers need to review the 

design of a project as a part of submittal review. The operators that use the Corsair interface are one 

audience. The electricians that maintain the control system are another. The PLC programmer has other 

needs. The Corsair developer needs other chapters. Usually different versions of the manual are printed 

for different people. 

Printing the Manual  

The manual is printed from the Corsair program’s main window by picking File/Print/Manuals from the 

menu. A window appears that allows the developer to select a printer and a number of copies. Clicking 

on the ‘Print’ button on this window causes the computer to go on to the ‘Print Manual’ window. This 

window allows the selection of manual printing options. Clicking on its ‘Print’ button starts the printing 

process. 

Engineer’s Review Chapters  

Specifying engineers on large projects sometimes require submittal documentation to verify that the 

contractor understands the plans and specifications. Some chapters of the Corsair manual can be used 

as a portion of the submittal. 

The Computer List chapter tells the engineer what interface computers will be provided by the 

contractor. 

The Alarms and Calls chapters tell the engineer information about the projects scope of work. 

The engineer may also be interested in the Listed Drawings and PLC I/O chapters. 

The interlock schemes chapter is used with corrections versions of the Corsair program. The engineer 

can use it to verify that the Corsair developer has the same understanding of door interlock logic that he 

has. 

Operators Chapters  

The Computer List chapter tells the operators what computers are running the Corsair program. 

The Alarms and Calls chapters give a listing of alarms and calls that have been programmed into the 

system. The printout can be of all the alarms and calls in the database or only those that are seen on a 

particular computer. 



155 | P a g e  
 

The Listed Drawings chapter may include information that is of interest to the operators. 

Electrician’s Chapters  

Electricians are sometimes interested in the TCP addresses chapter. They may be called in when a 

Corsair computer cannot communicate to a PLC. One thing that they can do is use the operating system 

‘Ping’ utility to verify that the network cable and hardware going to the PLC are working. This chapter 

tells the electrician what address to use to ping a PLC on the network 

The Computer List chapter gives a list of what computers are on the system using the Corsair database. 

In a large installation it may be a help to tell the electricians where the interfaces are. 

Listed Drawings can be used to include wiring diagrams and other documentation about a system. 

The PLC I/O chapter tells the electrician where PLC inputs and outputs are located and information 

about their addresses, module types, and signal ranges. 

PLC Programmers Chapters 

The PLC programmer is typically interested in the TCP addresses chapter. It documents the IP address of 

each PLC on the network that the Corsair program communicates with. The PLC programmer must set 

up the address into each piece of equipment using his programming software. The chapter helps to 

verify that each IP address on the network is different. 

The Driver and PLC Configuration chapter documents how the communications configuration of the 

Corsair program is set-up. The PLC programmer may need this information to help configure his 

equipment. 

The Door Bits chapter is only available with the corrections version of the Corsair program. It is used to 

co-ordinate PLC data addresses between the PLC program and the Corsair database. 

The interlock schemes chapter is used on corrections projects to aid the PLC programmer with writing 

door interlock logic. 

The Tree chapter is by far the most important chapter for the PLC programmer. It is the document of the 

data interface between him and the Corsair developer. He should keep an updated copy of the tree with 

him at all times when writing his PLC program and during start-up. 

The CI Device Addressing chapter is used with Corsair computer-indexed device tags. It correlates PLC 

addresses with Corsair computers in systems where multiple computers are used. This speeds up the 

writing of the PLC program and helps avoid errors in it. 

The ASCII table chapter is useful for the PLC programmer in when he needs to do some ASCII work in the 

PLC code. The Corsair programs ASCII expert windows are designed to give him more help in these 

cases. 

Corsair Developers Chapters  



156 | P a g e  
 

The Corsair developer is interested in the TCP addresses chapter since it documents the IP address of 

each of the Corsair computers on the network. These addresses must be set into the computer through 

the Windows control panel network set-up features. 

The device use counts chapter can be an aid to the Corsair developer. It shows how many times each 

device tag in the database is linked to something else in the database. Normally each device should be 

used at least once. This chapter is extremely valuable when a project has multiple PLCs with identical 

programs on identical pieces of equipment. The developer can check this chapter to see if the use 

counts of the devices on each PLC match. If they do not match there is a development error. 

The Alarms and Calls chapters can be used by the developer to check what he is doing against project 

specifications. 

The Blocks chapter is used to document the calculation blocks that are available for the developer to 

use. 

The Computer Properties chapter provides documentation as to how the properties on the Corsair 

computer are configured. This record shows what the computer is allowed to do, how it is configured for 

printing, and other items. 

The Driver and PLC Configuration chapter documents how the communications configuration of the 

Corsair program is set-up. 

The tree chapter can provide a visual way for the developer to check that PLC addresses in the database 

are in the correct place. 

The password rules chapter helps the developer to understand the relationship between authority 

device values and password levels. This can be difficult to understand without the help of the chapter. 

The Templates chapter provides information to the Corsair developer about how to use each of the 

standard templates that are within the Corsair program. This includes the required point names, 

devices, device sizes, and sometimes suggested addresses. 

Reference Chapters 

Some chapters are for reference purposes. They serve as an addition to other documentation for the 

Corsair program. 

The Help chapter is used as a quick keystroke reference for the Corsair developer. 

The Error Codes chapter is a printout of the error code numbers that are used by the Corsair program. It 

is helpful for the developer when he sees an error code number on the screen. 

The ASCII Table chapter prints out a detailed chart of the ASCII codes ranging from 0 to 127. 

The Templates chapter tells how the Corsair program uses its standard data templates. 



157 | P a g e  
 

 

 

 

The My IP System 
 

All versions of CorsairHMI contain a built-in system for the Corsair computer to determine its address on 

the Internet.  This is generally not the same as any of the IP addresses of the computers Ethernet ports.  

The system is not needed for installations that have a fixed known IP address.  It may be important 

when a fixed IP is too expensive, when it is not available, or for temporary installations. 

Corsair must access a web service that provides reporting of IP addresses.  The developer must 

determine what URL address he is going to use for a service.  Two possibilities are: 

 checkip.amazonaws.com 

 whatismyip.akamai.com 



158 | P a g e  
 

These and other URLs can be verified for proper My IP operation using the TCP Expert’s My IP Expert. 

 

When proper operation of a URL has been verified with this window it must be entered into the My IP 

group on computer configuration. 

 

The Hours entry is set to a nonzero value to activate the automatic My IP system.  The first check will be 

5 minutes after the CorsairHMI program is started.  Additional checks will occur at intervals of the 

number of hours that is entered here.  The service’s URL is entered into the edit box on the right. 

The Send Group number is the key number for an email send group for IP address notifications.  It must 

be nonzero for messages to be sent.  The normal action is to send one message when the address is 

checked the first time.  After that the address is rechecked at the IP Hours interval but messages are not 

sent unless it changes.  The ‘Always’ check box is used to make Corsair send messages with every check 

of the IP address.  If the hours are set to 24 and Always is checked Corsair will send an IP address 

notification at daily intervals. 

The next step may be to embed the My IP address in alarm email messages.  This is done from the 

computer properties email tab. 



159 | P a g e  
 

 

The option to ‘Include URL in Email’ must be checked.  Normally Corsair uses the URL that is entered 

into the edit box.  If ‘Embed IP’ is also checked it will put its current My IP into each email.  It will send 

‘http://’ followed by the IP followed by whatever is entered into the edit box.  This may be something 

like ‘:83’ if Corsair is acting as a web host on nonstandard port 83. 

If the following things are true: 

 Corsair is configured to act as a web host. 

 The My IP system is properly configured. 

 The local router is properly set up with port forwarding. 

 The Internet Service Provider is cooperative. 

then when Corsair sends an alarm message by texting to a cell phone the cell phone user can click on the 

URL in the message to open his browser and view Corsair. 

The Help/About window has a button to open the My IP system monitor window. 



160 | P a g e  
 

 

This window shows a summary of what is happening with the automatic My IP system.  The Go button 

can be used to start a read of the IP.  The Email button provides a review of the IP Address reporting 

email message. 

New Versions via Email 
CorsairHMI may wish to email a new version of the corsair.exe program to a customer.  Many email 

systems will not permit receiving a .exe executable program.  The customary way to handle this is to 

email the program disguised as a Microsoft Word document.  The file name that is used is ‘Mike.doc’.  

When you receive this file do not open it.   It must be renamed to ‘corsair32w.exe’.  The operating 

system may issue a warning about changing the extension of a file name.  This warning can be ignored. 

Using CorsairHMI with Linux 
Versions of the CorsairHMI software can be purchased for use with computers that are running the 

Linux operating system. 

  



161 | P a g e  
 

CorsairHMI System Design 
 

Integration work with the CorsairHMI program involves more than development of the interface 

graphics.  It includes 

Defining the communications architecture 

Selecting network hardware 

Determining Corsair license requirements 

Selecting other required software 

Coordinating the efforts of the developer and the PLC programmer 

Defining network addresses 

Determining what hardware and software tools are needed to configure equipment 

Getting Register Maps for connected equipment 

Collecting email requirements and addresses 

This manual contains information that is required for these and other tasks. 

PLC Addressing 
A tag that is located on a data source requires some sort of address to tell where the data is found on 

the source.  Frequently this source is a PLC – a Programmable Logic Controller.  The PLC manufacturer 

defines what sort of addresses it uses. 

Corsair Address Builder windows are windows that are defined for each driver.  They assist the 

developer with entering addresses that are correct for that driver.  The developer presses the F2 key to 

begin entry of the address, then F1 to open the address builder. 

A memory tag that is not on a data source does not require any entry in the address field. 

Register Monitors 
Operator interface programs like Corsair monitor and control processes through tagged data.  A 

developer typically sets up the program to communicate with a data source before creating any tags.  

Register Monitors are windows that are used with data sources without using tags.  They can be used to 

investigate the information coming from the data source before the tags are created.  

Register Monitors will be different for different types of drivers.  Some register monitors are view-only.  

Some have control capabilities.  Some have features to simplify the tag creation process.  All register 

monitors can only be viewed while the interface is running and only if the data source is ‘Live’. 



162 | P a g e  
 

Modbus Family Addressing 
Drivers that are based upon some version of the Modbus protocol have 4 different types of data 

addresses.  Addresses that begin with the number ‘0’ are memory bits or ‘coils’.  Addresses that begin 

with ‘1’ are input bits.  ‘3’ is the leading character for a 16-bit input register and ‘4’ for a 16-bit holding 

register.  The prefix data type number is followed by the offset number of the data within that block of 

memory.  These offsets start at 1.  The first holding register is 400001.  The second is 400002. 

Corsair does not depend on a fixed number of numbers in the address.  It only looks at the first digit to 

determine the type.  ‘40001’, ‘400001’, ‘401’, and ‘41’ all refer to the same register.  When Corsair 

generates a Modbus address it generally will use the ‘six-digit’ format.  It can use more digits for the 

specialized addresses with extremely large offsets that are possible with nonstandard protocols. 

Corsair’s proprietary extended modbus can use holding register 4998736. Standard modbus systems can 

only go to 49999 or 465536. 

There is an address builder window for use with these drivers. 

 

Data that is changeable by the Corsair HMI program must be of the 0x or 4x type.  1x and 3x data is not 

writable. 

All Modbus compatible drivers use a similar register monitor. 



163 | P a g e  
 

 

The monitor data is displayed in a sheet-style format.  The first address is entered into the edit control 

on the top of the window.  The ‘Address’ button can be used to open the Modbus address builder to 

assist in entering the address.  The ‘Count’ edit control is used to enter how many data items are going 

to be read by Corsair.  When the ‘Enable’ checkbox is checked Corsair will start reading the data from 

the data source and displaying it with a variety of data formats.  The status bar on the bottom of the 

window will report any errors. 

The operator can arrow around the rows and fields of the sheet data or click on a field to select it.  For 

some fields the operator can enter data that is to be written to the data source.   After putting the value 

into the ‘Entry’ edit control the ‘Set’,’Entry’ menu option is used to send the data.  Some fields permit 

the ‘Turn On’ and ‘Turn Off’ menu options. 

The ‘Set’,’Create Tag’ menu option is used to create a Corsair tag at the address on the current line.  The 

type of the tag depends upon which data format is selected.  This tag creation option is only available 

for certain fields. 

The second line of controls on the screen includes an edit box that may show a name of a corsair 

database record.  It may be a tag, a register block, an alarm, or a call.  This is a record that includes the 

address that is shown on the selected line.  The ‘View’,’Adjust for Tag’ menu option may be used to 

change the entered address to match the starting address of the tag. 



164 | P a g e  
 

Possible fields for the Modbus Register Monitor include: 

Address – the Modbus address of the data for that line 

Signed – the value as a signed 16-bit integer ranging from -32768 to +32767 

ASCII – the 16-bit value is represented as two ASCII characters 

Binary – the value as 16 binary bits, each of which is 1 or 0 

Bit 15 to Bit 0 – the binary value of an individual bit of the 16-bit data 

Unsigned – the value as an unsigned 16-bit integer ranging from 0 to 65535 

Hex Value – the value as a 16-bit integer in hexadecimal 

Flagged Int – an unusual signed 16-bit data type.  The most-significant bit is used for the sign and the 

other 15 bits represent the value.  This is not the same thing as normal twos-complement data. 

Hex Offset – the Modbus communications offset of the address, expressed in hexadecimal.  This can be 

used to verify addresses with many manufacturers published register maps. 

Both the DINT and Float types are 32-bit data.  Each element takes up 2 consecutive 16-bit Modbus 

registers.  Equipment venders differ in the order of how the data is arranged.  Most Corsair Modbus 

drivers give the developer separate options to ‘reverse’ the order of the registers for DINTs and Floats.  

The DINT and Float fields show the values using the current setting of the reversing options.  The 

Reversed DINT and Float fields show the values using the opposite settings.  The developer is to change 

the settings if needed so that he sees the correct data in the DINT and Float fields. After that he can 

create DINT and Float tags on the data source. 

Allen-Bradley DF1 Family Addressing 
There are some drivers that use addresses compatible with the Allen-Bradley DF1 protocol.  These 

addresses begin with a data file type designation.  It can be B for a binary data, F for floating point, N for 

integer, ST for string, and L for double (32-bit) integers.  The next part is a file number, followed by a 

colon, and then the array element number within the file.  The B and N data types can have an optional 

bit number ranging from 0 to 15. 

There is an address builder window for use with these drivers. 



165 | P a g e  
 

 

The Allen-Bradley register monitor is very similar to the Modbus monitor described in the previous 

section.  It has less fields because the formats for AB data are more strictly defined than they are for 

Modbus. 

Reserved Addresses 
Some drivers must connect to devices that do not have defined addressing.  In these cases Corsair uses 

special addresses that it has reserved for different types of data.  The About printout for the driver 

contains a list of these reserved addresses. 

 

Aux Databases 
Some drivers require additional setup configuration data.  They use a system of Auxiliary databases.    

Aux database data is shown in a sheet-style row and column format.  The developer enters this data and 

then saves it into the Model file with the ‘File’ ‘Save File’ menu option.  It is important to note that he 

will not be warned if he closes the Corsair program without saving this data. 

The About printout for a driver contains a list of what aux databases are used by the driver. 

 



166 | P a g e  
 

Driver Types 
Each driver record in the CorsairHMI database has the ‘??’ undefined type when it is initially created.  

The developer must determine what type to use for the record.  Press F2 to edit the type field and then 

F1 to open the type selector. 

 

ABCLX – Allen-Bradley Logix 
Xx 

 

ActiveX – ActiveX Control Interface 
The ActiveX driver can be used to interact with some types of ActiveX Controls that come from 

companies.  This driver cannot be used with Linux versions of the Corsair program.  

ANSITERM – ANSI Terminal Text Display 
The ANSITERM driver is used to drive a standard VT-100 compatible text terminal from a serial port.  The 

terminal is a display-only device.  The computer ignores any keystrokes that come from the terminal.  

The connecting wire that transmits data from the terminal to the Corsair computer can be left 

unhooked.  This makes it impossible to ‘hack’ into the computer system from the text terminal.  The 

system is similar to what Corsair does with streaming serial data security.  Because of that it may be 

usable in some corrections systems where text display is desired in an area accessible to inmates. 

With proper RS-422 or RS-485 connections multiple terminals can be multi-dropped on the same serial 

line.  These terminals are not addressable so each one will display the same thing as all the others. 

ASCII Read – Unsolicited – Serial Port 
Background 

The Corsair ASCII Read driver is designed so that the Corsair program can accept unsolicited ASCII data 

from an instrument over a serial communications line. The term ‘unsolicited’ means that the Corsair 

program does not initiate communication by sending data requests to the instrument. Usually the 

instrument only transmits and does not receive. Corsair usually only receives and does not transmit. The 

serial line may be RS- 232, RS-422, or RS-485. It is generally not possible to multi-drop several 

instruments on the serial line with this driver.  

A bar code scanner is an example of an instrument that may send data to Corsair using this driver. It 

would only send data when a bar code is scanned. Another possibility would be a temperature 

monitoring instrument that sends the temperature value at a regular timed interval. In each case the 

data that is send by the instrument must be in a format that the driver can accept. The driver has been 

designed to accept a wide variety of input data but it cannot be guaranteed to accept any data stream. 



167 | P a g e  
 

Applications that use this driver should test it using a free demonstration version of Corsair before a 

license is purchased. 

The driver is typically used only with ASCII data with character values ranging from 1 through 128. It 

cannot be used with raw binary data. Received data packets must be marked by one or more definite 

trailing delimiter characters. Packets that are only marked by a leading character may not be usable with 

this driver.  

To be discussed – fixed character count after header with no trailer??? 

The Driver Record 

The developer must first create a driver record in the Corsair database. After creating the record he can 

press F6 to jump to single-record editing of the driver record. This window has an ‘About’ button that 

will print a document explaining the options that are available with the driver. It is highly recommended 

that the developer print this out to see what options his version of Corsair will support. It is also 

recommended that the developer prints out the ASCII character table that is available as part of his 

Corsair application manual. This lists all the available ASCII characters with their decimal equivalents. 

The developer must specify a serial port number as a part of the driver database record. This number 

can range from 1 to 10. It must be a serial port that is not in use by another driver. The developer must 

enter the transmission properties of the port. These include baud rate, stop bits, and parity. The 

developer must create one or more PLC records under the driver. When the program starts interface 

operation the driver will send incoming serial line characters to each of the PLC records. Most systems 

will use only one PLC record with each ASCII Read driver although an unlimited number is possible. 

Driver Transmit Options 

The driver can be set up to periodically transmit up to 3 fixed data packets to the remote instrument. 

These packets can only be changed by the Corsair developer. They cannot change dynamically as Corsair 

is running. These are not true ‘polling’ packets as Corsair does not wait for a response after sending 

them. Packets are sent at regular timed intervals whether the remote instrument replies or not. The 

developer specifies the transmit data packets in 3 parts. The first part is 0 to 3 leading characters that 

the developer specifies as raw ASCII values. The second part is three different character strings that the 

developer types in. The third part is 0 to 3 trailing characters. They are also specified as raw ASCII values. 

This approach allows the developer to specify non-printable control characters like carriage returns or 

line feeds in the lead or trail part of the packet. The developer also enters the time interval for 

retransmitting the packet. If this interval is set to zero Corsair will not do the transmission. 

Received Packet Format Discovery 

In most cases the Corsair developer should know the format of the data that is coming into the serial 

port. This is essential for him to set up the Received ASCII Processing. If he does not know the format he 

may be able to reverse-engineer it with the help of the Corsair Comms Trace window. This window is 

accessed as Tools/Expert/ASCII Expert/Comms Trace. The driver must be set up and the interface turned 



168 | P a g e  
 

on before this window will show the incoming character stream. The separation of the incoming receive 

characters into groups by the Comms Trace window is not significant. The developer can accumulate 

several characters in the Comms Trace. He can then pause it and print the contents of the trace buffer. 

The printout can then be used to determine the trailing packet termination character or characters, if 

the packet has leading header characters, and other information. The rest of the reverse-engineering 

can probably be done with the PLC Register Monitoring window. 

Received ASCII Processing 

Corsair can perform several operations on the received data before it is ready to assign to a tag. These 

operations are divided into levels. The processing is competed on each level before Corsair starts the 

processing on the next level. There are a total of 9 levels. Corsair can perform more than one type of 

processing at most of the levels.  

The type of processing is specified as driver-specific setup data items on both the driver and PLC 

records. This can be done by zooming on the records or by buttons on the PLC Register Monitoring 

window. 

The PLC Register Monitoring Window 

The PLC Register monitoring window is used with most drivers to monitor and change values in PLC 

registers. This menu option creates a different window when the PLC is attached to an ASCII read driver. 

The window is a dynamic display of incoming serial port data showing the different levels of receive 

processing. Each level shows a check box on the left side of the window. There may be an error code 

number showing on a button on the bottom of the window. The developer’s intention is to get all of the 

boxes checked and no error on the button. When this is complete he can create tags under the PLC 

using reserved addresses that are specific to the ASCII Read driver.  

The strings that are shown on the PLC Register Monitoring Window are modified to make non-printing 

characters viewable. This is done with slash sequences that are marked with the back-slash ‘\’ character. 

A space is shown as \SP\. Control characters are shown with their ASCII names. Carriage return is \CR\. 

Line feed is \LF\. Characters with values over 127 are shown as a decimal number between the slash 

marks. A literal backslash is shown as two consecutive backslashes. Typically the developer applies the 

parsing rules in several levels until he sees a result that is free of backslashes. That result is the data that 

is applied to a tag. 

The PLC Register Monitoring Window may not be able to show the entire packet from each level since it 

is limited in the number of characters that it can show. 

Driver Level 1 Received Character Processing  

Level 1 processing is done at the driver level before the characters are passed to each of the PLCs. 

Corsair has no concept of separate data packets at this level – it just sees a stream of characters. The 

same processing that is done by the driver is done on the data going to each of the PLC records. The 

Level 1 data that is shown on the top of the PLC Register Monitoring window is the result after Level 1 



169 | P a g e  
 

Driver processing. The only way that the developer can see data before this processing is applied is by 

using the Comms Trace.  

Since the Driver has no knowledge of packet boundaries at level 1 there is only a limited amount of 

simple processing that it can do. This includes character replacement, skipping characters, high bit 

processing, and case correction. They are defined using Driver setup items. The processing is always 

done in the same order that the setup items are shown on the developer’s window or listed on the 

‘About’ printout.  

The first thing that the driver can do is a series of character substitutions. The developer enters a 

replaced character and a corresponding replacement. These entered characters can have values as high 

as 255 and can include the 0 NULL character. If a replaced character is entered as 46 and the 

replacement is 44 all periods are replaced with commas.  

The next thing that a driver can do is skipping different types of characters. The developer enters a 

character value ranging from 1 to 255. It is not possible to skip zero Null characters with this type of 

processing. If the developer enters a value of 65 the driver will eliminate all characters whose value is an 

Upper-Case ‘A’. 

The next thing that the driver can do concerns characters whose high-order bits are on. These 

characters would have values ranging from 128 through 255. The drive can take no action and pass the 

characters through unchanged. It can shut the high bit off which effective subtracts 128 from the 

character value. It can skip all characters whose high bit is on. 

An incoming data stream may have some high-bit-on characters that are needed for defining packets 

and some that are to be ignored. One approach may be to change the desired characters to a seldom 

used character like the 126 ‘tilde’. This changes them to a high-bit-off character. Then the remaining 

high-bit-on characters can be skipped. 

The next driver action is to strip out ASCII Null (zero) characters. Corsair does this by default but he 

developer can set the driver to pass Nulls. 

The next driver action is to skip all Space (decimal 32) characters. This has the same effect as the earlier 

Skip actions except that it is limited to a fixed character value of 32. 

The next driver action is to deal with received carriage returns and line feeds. Both can be left in, the 

driver can skip either one, or the drive can skip both. 

The next driver action concerns control characters with values less than 32. The driver can pass them 

through, it can skip all of them, or it can skip all of them while still passing carriage returns and line 

feeds. 

The next drive action concerns the case of letters from ‘A’ to ‘Z’. They can be left as they are, changed to 

upper-case, or changed to lower-case.  



170 | P a g e  
 

After the developer sees what he wants in the Level 1 Register Monitoring Window he needs to define 

how the incoming data stream is to be divided into packets. 

PLC Level 2 Packet Definition  

Packet definition is to be done at the PLC level. An ASCII Read driver may feed data to 

multiple PLC records. Each PLC record can use different definitions for a packet. Data packets are always 

defined with at least 1 trailing character. As an option they may also have 1 or more leading characters. 

Frequently there is only a single trailing character which is as ASCII carriage return (decimal 13). This 

character shows as \CR\ in the level 1 Register Monitoring Window. In this case characters are read in 

until a carriage return is encountered. The return marks the end of the packet. Corsair copies the data 

from the Level 1 to the Level 2 buffer and then takes the data out of Level 1. 

The developer can specify from 1 to 3 trailing characters. If more than one is specified they must arrive 

in exact order in order to be considered as a valid packet end. Packets can also be defined with 0 to 3 

lead characters in addition to the minimum of 1 trail characters. 

It is important to note that the specified leading and trailing characters are required to define the 

boundaries of a packet but they are not a part of the Level 2 packet. The packet that Corsair works with 

is after the last lead character and before the first trail character. 

The developer can specify a Level 2 Post-Trailer skip count. This is a fixed number of characters that are 

skipped after the packet trailer. It can be used in unusual situations where a checksum appears after the 

trailer. 

PLC Level 6 Field Parsing 

The Corsair driver works on the data stream with level 1. The PLC rules modify the data stream with 

levels 2 through 5. Each of these levels results in a single string with a length that is shown on the 

Register Monitoring Window. Level 6 offers the ability to split the Level 5 data into up to 10 fields. This is 

done with different types of field parsing. 

The simplest field parsing is to pass the level 5 string to level 6 as one field. A common type of filed 

parsing is to use commas as a separator. Corsair will divide the Level 5 packet into fields based upon the 

positions of the comma character. Commas will not appear in the resulting fields. A space character can 

also be used as a field parsing delimiter. If a comma or a space cannot be used to separate fields a 

custom parsing delimiter character can be entered. The ASCII Null (zero) character can be used as a 

custom parsing delimiter. 

The Register Monitoring Window shows how many fields are present at Level 6. The developer can enter 

a minimum number of Level 6 fields ranging from 0 through 10. If the data does not produce the 

minimum number of fields the packet is rejected. 

PLC Level 3-5 and 7-9 String Parsing 



171 | P a g e  
 

The developer can enter up to 12 string parsing actions. Each of these actions is specified with 4 

parameters. 

The first parameter is the parsing action. If it is set to ‘Do Nothing’ no further action is done. There are 

several available string parsing actions. Different actions use different combinations of the second 

through fourth parameters. 

The Second parameter is the Parse Character. It is may range in value from 0 to 255. 

The third parameter is the Second Character. It also ranges from 0 to 255. Some parse actions may view 

this parameter as a number or count and not as a character. 

The fourth parameter is the Label. It is a text field that may be up to 6 characters long. 

Six string parsing actions apply before the data is separated into fields at Level 6. These actions are 

called Level 3A, Level 3B, Level 4A, Level 4B, Level 5A, and Level 5B. The Level 4 data that is shown on 

the Register Monitoring Window is the result when the Level 3B data is modified first by the Level 4A 

action and then by the Level 4B action. 

Six more string parsing actions are applied after Level 6. These actions are called Level 7A, Level 7B, 

Level 8A, Level 8B, Level 9A, and Level 9B. Each action is applied to each of the fields at that level. The 

Level 8A type is applied to all of the Level 7B fields before the Level 8B action starts. 

Minimum Result String Length 

The developer specifies a minimum result length with the PLC record. A packet may show as valid with 

all levels checked on the Register Monitoring Window and still not meet the requirement for a Minimum 

Result Length. This Length is taken into account when passing data from the packet to a Corsair Tag. 

PLC Reserved Tag Addresses 

Corsair tags created under PLCs with the ASCII Read driver can have anything for a TAG ID name but 

they can only have certain pre-defined addresses. The driver type ‘About’ printout lists all the available 

reserved tag addresses. Most of the addresses show a specific Level and some show a field number. 

The address “Level5” means that the tag gets its data from the results after Corsair has done all the 

parsing up to and including the Level 5 actions. If the data has less than the minimum result string length 

in level 5 the data is rejected. The address “Field910” means that the tag gets it data from the results 

after Corsair has done all the parsing up to and including the Level 9 actions. The data comes from the 

number 10 field. 

The “Timed Out” address is for an indicator. The PLC turns this tag on when a valid packet has not been 

received for a time longer than the PLC timeout value. The tag is turned off when a valid packet has 

been received. 



172 | P a g e  
 

The “Complete” address is for a special indicator. The PLC turns this tag on when an acceptable packet 

has been received. It does not turn the tag off. The tag can then be used in other parts of the Corsair 

program to perform functions like tripping a data log. The data log should then turn the tag off. 

Match Characters and Fields  

Systems that are set up with multiple PLCs using this driver typically are set up so that each PLC rejects 

packets that are not meant for it. This is done through ‘Match Characters’ or ‘Match Fields’. A Match 

Character is a character at a predefined position in the input stream. If a PLC looks for a Match Character 

at a position and that character is not found the packet is rejected. A Match Field is specified with a label 

and a field number ranging from 1 to 10. If the contents of the field do not begin with the Label the 

packet is rejected. 

Frequently Match Field Checks are applied at Level 8. Level 9 processing removes labels so that the 

desired value appears as a Level 9 field. For example, at Level 8 Field 3 might show “TEMP=53.6”. A 

match field check might look for the label “TEMP=”. If it does not match the packet is rejected. A Level 

9A parsing action would move ahead to a Numeric Character. This would leave “53.6” as data for a Level 

9 Tag. Another PLC record may be match checking for “HUMIDITY=”. Since parsing labels are limited to 6 

characters it could check for “HUMIDI”. 

PLC String Parsing Action Reference  

The term ‘Numeric’ refers to the digits 0 through 9, the minus sign, and the period (point). A comma or a 

plus sign are not considered to be a numeric by Corsair. 

The term ‘Alpha’ refers to letters. It includes upper case ‘A’ (65) through ‘Z’ (90) and lower case ‘a’ (97) 

through ‘z’ (122). 

‘Alpha-Numeric’ characters are characters that are either Numeric or Alpha. 
A ‘Control’ character is a character with an ASCII code value less than 32. 
A ‘Space’ has an ASCII value of 32. 
A ‘Comma’ has an ASCII value of 44. 
A ‘Carriage Return’ (CR) has an ASCIII value of 13. 
A ‘Line Feed’ (LF) has an ASCII value of 10. 
 
A ‘Mixed Case’ string begins with a capital (upper case) letter with the rest of the letters in lower case. 

The term ‘Skip’ means eliminate a character from the string. 

The term ‘Move Ahead To’ means eliminate all the characters before an item but leave the item. 

The term ‘Move Ahead Past’ means eliminate all the characters before an item and also eliminate the 

item itself. 

‘High Bit’ characters are characters whose most-significant bit is turned on. They have ASCII values 

ranging from 128 to 255.  



173 | P a g e  
 

The term ‘Compress’ means to change two or more consecutive occurrences of a character to a single 

occurrence. 

PLC String Parsing Action Categories  

The many different parsing actions can be divided into several broad categories. 

One category is character modification actions. They may change a character but they do not change the 

length of a string. 

Force upper case – Limit to Non-Zero Maximum Count 
Force Lower case – Limit to Non-Zero Maximum Count 
Force Mixed case – Limit to Non-Zero Maximum Count 
Force upper case on parse character – Limit to Non-Zero Maximum Count 
Force lower case on parse character – Limit to Non-Zero Maximum Count 
Force upper case on characters - counted from start 
Force upper case on characters - counted from end 
Force lower case on characters - counted from start 
Force lower case on characters - counted from end 
Mask all high bits off – Limit to Non-Zero Maximum Count 
 
Another category is Skip Actions. A skip action takes one or more portions of the stringand eliminates 

(skips) characters. The skip actions include: 

Skip spaces between +- and a number 

Skip All Control Characters except parse character 
Skip all non-printable except parse character 
Skip Leading non-printable except parse character 
Skip Trailing non-printable except parse character 
 
Skip All Occurrences of Parse Character 
Skip Leading Group of Parse Character 
Skip Trailing Group of Parse Character 
Skip Occurrences of Parse Character - counted from start 
Skip Occurrences of Parse Character - counted from end 
 
Skip All Occurrences of Label 
Skip Occurrences of Label – counted from start 
Skip Occurrences of Label – counted from end 
 
Skip all non-numeric except parse character 
Skip all non-hex except parse character 
Skip all non-alpha except parse character 
Skip all non-alphanumeric except parse character 
Skip all Upper-Case except parse character 
Skip all Lower-Case except parse character 
Skip all high-bit characters except parse character 



174 | P a g e  
 

 
Compress all groups of Parse Character 
Compress groups of Parse Character – counted from start 
Compress groups of Parse Character – counted from end 
 
Another category is Replace actions. One or more portions of the string are replaced with one of the 

characters. 

Replace all of the parsing character with the second character 

Replace all occurrences of the label with the parsing character 
Replace occurrences of the label with the parse character - counted from start 
Replace occurrences of the label with the parse character – counted from end 
 
Replace all high-bit characters with parse character 

Another category is Move Ahead To actions. Each of these actions has a marker. The computer skips all 

characters before the marker but leaves the marker. 

Move Ahead To Occurrence of Parse Character – numbered from start 
Move Ahead To Occurrence of Parse Character – numbered from end 
 
Move Ahead To Group of Parse Character – numbered from start 

Move Ahead To Upper Case – numbered from start 
Move Ahead To Upper Case – numbered from end 
Move Ahead To Lower Case – numbered from start 
Move Ahead To Lower Case – numbered from end 
 
Move Ahead to Occurrence of Label – numbered from start 
Move Ahead to Occurrence of Label – numbered from end 
 
Move Ahead To Numeric Group – numbered from start 
Move Ahead to Hex Group – numbered from start 
Move Ahead To Alpha Group – numbered from start 
Move Ahead To Alpha-Numeric Group – numbered from start 
Move Ahead to High-Bit Character – counted from start 
 
Another category is Move Ahead Through actions. Each of these actions has a marker. The computer 

skips all characters up to and including the marker. 

Move Ahead Through Leading Characters – counted from start 
Move Ahead Through Occurrence of Parse Character – numbered from start 
Move Ahead Through Occurrence of Parse Character – numbered from end 
Move Ahead Through Group of Parse Character – numbered from start 
 
Move Ahead Past Upper Case – numbered from start 
Move Ahead Past Upper Case – numbered from end 



175 | P a g e  
 

 
Move Ahead Past Lower Case – numbered from start 
Move Ahead Past Lower Case – numbered from end 
 

Move Ahead Past Occurrence of Label – numbered from start 
Move Ahead Past Occurrence of Label – numbered from end 
 
Move Ahead Past Numeric Group – numbered from start 
Move Ahead Past Hex Group – numbered from start 
Move Ahead Past Alpha Group – numbered from start 
Move Ahead Past Alpha-Numeric Group – numbered from start 
Move Ahead Past High-Bit Character – counted from start 
 
Another category is Truncate actions. 

Truncate to a maximum number of characters 
Truncate trailing non-numeric 
Truncate trailing numeric 
Truncate trailing alpha 
Truncate trailing alpha-numeric 
Truncate trailing high-bit characters 
Truncate trailing non-printable 
Truncate trailing group of parse character 
Truncate trailing characters – counted from end 
 

Another category is the Truncate From actions. Each of these actions has a marker. The computer 

truncates the marker and all characters after it. 

Truncate from first non-numeric after numeric 
Truncate from first non-printable 
Truncate a maximum count of trailing hex characters 
Truncate from occurrence of Parse Character – numbered from start 
Truncate from occurrence of Parse Character - numbered from the end 
 
Truncate from group of Parse Character – numbered from start 
Truncate from group of Parse Character - numbered from the end 
 

Truncate from occurrence of Label - numbered from start 
Truncate from occurrence of Label - numbered from the end 
 
Another category is the Truncate After actions. Each of these actions has a marker. The computer leaves 

the marker but truncates all characters after it. 

Truncate after last numeric 
Truncate after last alpha 



176 | P a g e  
 

 
Truncate after occurrence of Parse Character – numbered from start 
Truncate after occurrence of Parse Character - numbered from end 
 
Truncate after occurrence of Label - numbered from start 
Truncate after occurrence of Label - numbered from end 
 

Another category is the verify actions 

Verify Parse Character in position - numbered from start 
Verify Parse Character in position - numbered from end 
Verify Parse Character in any position 
 

Verify Label in Position numbered from start 
Verify Label in Position numbered from end 
Verify Label in any position 
 
Verify Label at Start of Numbered Field 
Verify Label at End of Numbered Field 
Verify Label in any position of Numbered Field 
 
Verify a minimum number of characters 
Verify an exact count of characters 
Verify a maximum number of characters 
Verify a minimum count of numeric data items 
 
Another category is combination actions. 

Lead, trail, compress parse character 
Mixed Case, skip all lower 
 
Another category is special actions 

Limit maximum field count 
Delimit from occurrence of Parse Character – numbered from start 
Delimit from occurrence of Parse Character – numbered from end 
Delimit between Parse and Second Character 
PLC String Parsing Action Descriptions  

String parsing actions are distinguished by a number and a description. 

Action 0: Do Nothing 

This action does nothing. 

Action 1: Force upper case – Limit to Non-Zero Maximum Count 



177 | P a g e  
 

aBcDeF 
is changed to 
ABCDEF 
 
If the count is zero all lower-case characters are changed. If the count is not-zero Corsair stops after 

counting out that many letters. Assume that the count is 3 

2a4BcDeF 
is changed to 
2A4BCDeF 
 
Action 2: Force Lower case – Limit to Non-Zero Maximum Count 

aBcDeF 
is changed to 
abcdef 
 
Action 3: Force Mixed case – Limit to Non-Zero Maximum Count 

sAm/SP/daVE/SP/CHARLIE 
is changed to 
Sam/SP/Dave/SP/Charlie 
 
Action 4: Force upper case on parse character – Limit to Non-Zero Maximum Count 

Action 5: Force lower case on parse character – Limit to Non-Zero Maximum Count 

Action 6: Force upper case on characters - counted from start 

The count must be at least one or there will be an error. The count is of all characters from the start. 

Assume a count of 4 

2aBcdEF 
is changed to 
2ABCdEF 
 
Action 7: Force upper case on characters - counted from end 

Action 8: Force lower case on characters - counted from start 

Action 9: Force lower case on characters - counted from end 

Action 10: Mask all high bits off – Limit to Non-Zero Maximum Count 

Action 11: Skip spaces between +- and a number 

Action 12: Skip All Control Characters except parse character 

Action 13: Skip all non-printable except parse character 



178 | P a g e  
 

Action 14: Skip Leading non-printable except parse character 

Action 15: Skip Trailing non-printable except parse character 

Action 16: Skip All Occurrences of Parse Character 

Assume that the parse character is 32 for an ASCII space 

/SP//SP/Temp/SP//SP/53.6/SP//SP/ 

is changed to 

Temp53.6 

Action 17: Skip Leading Group of Parse Character 

Assume that the parse character is 32 for an ASCII space 

/SP//SP/Temp/SP//SP/53.6/SP//SP/ 
is changed to 
Temp/SP//SP/53.6/SP//SP/ 
 
Action 18: Skip Trailing Group of Parse Character 

Assume that the parse character is 32 for an ASCII space 

/SP//SP/Temp/SP//SP/53.6/SP//SP/ 
is changed to 
/SP//SP/Temp/SP//SP/53.6 
 
Action 19: Skip Occurrences of Parse Character - counted from start 

Action 20: Skip Occurrences of Parse Character - counted from end 

Action 21: Skip All Occurrences of Label 

Action 22: Skip Occurrences of Label – counted from start 

Action 23: Skip Occurrences of Label – counted from end 

Action 24: Skip all non-numeric except parse character 

Action 25: Skip all non-hex except parse character 

Action 26: Skip all non-alpha except parse character 

Action 27: Skip all non-alphanumeric except parse character 

Action 28: Skip all Upper-Case except parse character 



179 | P a g e  
 

Action 29: Skip all Lower-Case except parse character 

Action 30: Skip all high-bit characters except parse character 

Action 31: Compress all groups of Parse Character 

Compression eliminates consecutive occurrences of the parse character. Assume that the parse 

character is 32 for an ASCII space 

/SP//SP/Temp/SP//SP/53.6/SP//SP/ 
is changed to 
/SP/Temp/SP/53.6/SP/ 
 
Action 32: Compress groups of Parse Character – counted from start 

Action 33: Compress groups of Parse Character – counted from end 

Action 34: Replace all of the parsing character with the second character 

Action 35: Replace all occurrences of the label with the parsing character 

Action 36: Replace occurrences of the label with the parse character - counted from start 

Action 37: Replace occurrences of the label with the parse character – counted from end 

Action 38: Replace all high-bit characters with parse character 

Action 39: Move Ahead To Occurrence of Parse Character – numbered from start 

Action 40: Move Ahead To Occurrence of Parse Character – numbered from end 

Action 41: Move Ahead To Group of Parse Character – numbered from start 

Action 42: Move Ahead To Upper Case – numbered from start 

Action 43: Move Ahead To Upper Case – numbered from end 

Action 44: Move Ahead To Lower Case – numbered from start 

Action 45: Move Ahead To Lower Case – numbered from end 

Action 46: Move Ahead to Occurrence of Label – numbered from start 

Assume that the label is “ABC” 
The string is “DEFGABCHIJABCKLMABCNOP” 
If the number is 0 the action returns an error. 
If the number is 1 the result is “ABCHIJABCKLMABCNOP” 
If the number is 2 the result is “ABCKLMABCNOP” 
If the number is 3 the result is “ABCNOP” 
If the number is greater than 3 the result is “ABCNOP”. 



180 | P a g e  
 

 
Action 47: Move Ahead to Occurrence of Label – numbered from end 

Action 49: Move Ahead To Numeric Group – numbered from start 

Action 50: Move Ahead to Hex Group – numbered from start 

Action 50: Move Ahead To Alpha Group – numbered from start 

Action 51: Move Ahead To Alpha-Numeric Group – numbered from start 

Action 52: Move Ahead to High-Bit Character – counted from start 

Action 53: Move Ahead Through Leading Characters – counted from start 

Action 54: Move Ahead Through Occurrence of Parse Character – numbered from start 

Action 55: Move Ahead Through Occurrence of Parse Character – numbered from end 

Action 56: Move Ahead Through Group of Parse Character – numbered from start 

Action 57: Move Ahead Past Upper Case – numbered from start 

Action 58: Move Ahead Past Upper Case – numbered from end 

Action 59: Move Ahead Past Lower Case – numbered from start 

Action 60: Move Ahead Past Lower Case – numbered from end 

Action 61: Move Ahead Past Occurrence of Label – numbered from start 

Assume that the label is “ABC” 
The string is “DEFGABCHIJABCKLMABCNOP” 
If the number is 0 the action returns an error. 
If the number is 1 the result is “HIJABCKLMABCNOP” 
If the number is 2 the result is “KLMABCNOP” 
If the number is 3 the result is “NOP” 
If the number is greater than 3 the result is “NOP”. 
 
Action 62: Move Ahead Past Occurrence of Label – numbered from end 

Action 63: Move Ahead Past Numeric Group – numbered from start 

Action 64: Move Ahead Past Hex Group – numbered from start 

Action 65: Move Ahead Past Alpha Group – numbered from start 

Action 66: Move Ahead Past Alpha-Numeric Group – numbered from start 

Action 67: Move Ahead Past High-Bit Character – counted from start 



181 | P a g e  
 

Action 68: Truncate to a maximum number of characters 

Corsair shortens the packet if the length is greater than the count parameter. 

Action 69: Truncate trailing non-numeric 

Action 70: Truncate trailing numeric 

Action 71: Truncate trailing alpha 

Action 72: Truncate trailing alpha-numeric 

Action 73: Truncate trailing high-bit characters 

Action 74: Truncate trailing non-printable 

Action 75: Truncate trailing group of parse character 

Action 76: Truncate trailing characters – counted from end 

Action 77: Truncate from first non-numeric after numeric 

Action 78: Truncate from first non-printable 

Action 79: Truncate a maximum count of trailing hex characters 

Action 80: Truncate from occurrence of Parse Character – numbered from start 

Action 81: Truncate from occurrence of Parse Character - numbered from end 

Action 82: Truncate from group of Parse Character – numbered from start 

Action 83: Truncate from group of Parse Character - numbered from end 

Action 84: Truncate from occurrence of Label - numbered from start 

Action 85: Truncate from occurrence of Label - numbered from end 

Action 86: Truncate after last numeric 

Action 87: Truncate after last alpha 

Action 88: Truncate after occurrence of Parse Character – numbered from start 

Action 89: Truncate after occurrence of Parse Character - numbered from end 

Action 90: Truncate after occurrence of Label - numbered from start 

Action 91: Truncate after occurrence of Label - numbered from the end 



182 | P a g e  
 

Action 92: Verify Parse Character in position - numbered from start 

Action 93: Verify Parse Character in position - numbered from end 

Action 94: Verify Parse Character in any position 

Action 95: Verify Label in Position numbered from start 

Action 96: Verify Label in Position numbered from end 

Action 97: Verify Label in any position 

Action 98: Verify Label at Start of Numbered Field 

Action 99: Verify Label at End of Numbered Field 

Action 100: Verify Label in any position of Numbered Field 

Action 101: Verify a minimum number of characters 

Corsair rejects the packet if the length is less that the count parameter. 

Action 102: Verify an exact count of characters 

Action 103: Verify a maximum number of characters 

Action 104: Verify a minimum count of numeric data items 

Action 105: Lead, trail, compress parse character 

This is a combination of actions 17,18, and 31. It skips leading occurrences of the parse character, then 

trailing occurrences of the character, and then it compresses all other groups of the character. Assume 

that the parse character is 32 for an ASCII space. 

/SP//SP/Temp/SP//SP/53.6/SP//SP/ 
is changed to 
Temp/SP/53.6 
 
This is a common action to be used before space-delimited field parsing 

Action 106: Mixed Case, skip all lower 

sAm42/SP/daVE/SP/CHARLIE58 
is changed to 
S42/SP/D/SP/C58 
 
Action 107: Limit maximum field count 

Action 108: Delimit from occurrence of Parse Character – numbered from start 



183 | P a g e  
 

Assume that the parse character is an ASCII comma. 

AAA,BBB,CCC,DDD, 
If the number is 0 – there is an error 
If the number is 1 – The result is AAA 
If the number is 2 – The result is BBB 
If the number is 3 – The result is CCC 
If the number is 4 or greater – The result is DDD 
 
Action 109: Delimit from occurrence of Parse Character – numbered from end 

Assume that the parse character is an ASCII comma. 

AAA,BBB,CCC,DDD, 
If the number is 0 – there is an error 
If the number is 1 – The result is DDD 
If the number is 2 – The result is CCC 
If the number is 3 – The result is BBB 
If the number is 4 or greater – The result is AAA 
 
Action 110: Delimit between Parse and Second Character 

Assume that the parse character is 65 for an upper case ‘A’. 

The second character is 66 for an upper case ‘B’. 

QZAMONKEYBQ 
Is changed to 
MONKEY 

 

ASCII Write – Triggered Output – Serial Port 
Xx 

 

BACnet – Building Automation and Control 
BACnet is a protocol that is used for building automation equipment.  This includes power meters, 

HVAC, and lighting equipment.  CorsairHMI talks BACnet/IP over Ethernet.  Many field devices use a 

multi-drop serial communications standard like BACnet MS/TP.  Some sort of BACnet router hardware is 

required to make the translation from Ethernet to serial. 



184 | P a g e  
 

The IP address of a BACnet device is specified on the driver record and not on the data source records. If 

multiple BACnet MS/TP devices are on the same router each one requires a separate data source record. 

Network routing information is entered under the data source. 

There are several special setup data parameters under the data source record.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

If no UDP Port number is entered the value will be zero. In that case Corsair will default to using decimal 

47808 which corresponds to hexadecimal OxBACO. 

The Use Routing Yes/No option allows Corsair to communicate through BACnet routers. If it is set to 

‘Yes’ the destination network number and the destination MAC bytes must be properly set. These bytes 

are for routing on the BACnet networks. They are not the 6-byte Ethernet MAC address of the router.  

BACnet Doors 

Corrections versions of Corsair that have door records in their model database must use objects with the 

‘ACD access-door’ object type. The developer will enter the type with an instance number for the start 

UDP Port Number  

Write Priority 1-16 

Use Routing?        Yes/No 

Destination Network 

Destination MAC Length 1-6 

 MAC Byte 

MAC Byte 

MAC Byte 

MAC Byte 

MAC Byte 

MAC Byte 

1 

2 

3 

4 

5 

6 

Scan Door Status of ACD?           Yes/No 

Scan Lock Status of ACD?            Yes/No 

Scan Secure Status of ACD          Yes/No 

Read Present Value of ACD?       Yes/No 



185 | P a g e  
 

address of the door. An example would be ‘ACD.47.’ Tag addresses for this driver must specify a BACnet 

property but door addresses do not.  

BACnet Door Status 

Corsair reads door status information from a device using up to four properties. They are ‘door-status’, 

‘lock status’, ‘secure status’, and ‘present value.’ The developer uses the data source setup parameters 

to tell Corsair which properties are present on the device he is using. If all four status properties are 

available, the developer will usually choose to not read the present value of the ACD object to minimize 

communications. Present value is a required property of the BACnet object. The status properties are 

optional so they may not be available with every system. 

With most systems the preferred combination is ‘lock-status’ and ‘secure-status.’ 

BACnet Door Commands 

Corsair writes to the present-value property of the door to operate it. 3 standard BACnet enumerations 

of the integer are used – 0 to lock, 1 to unlock, and 2 to pulse-unlock. Corsair uses the proprietary 

enumeration of 1024 to stop a slider. Corsair does not use the BACnet standard 3 Extended Pulse Unlock 

enumeration of any of its standard F1-F4 door control keystrokes. A developer could program something 

to write this value as a separate option. 

Keystroke options depend upon the type of the door. They include: 

 Monitored Door  No Keystrokes 

 Half-Cycle Lock  F1 – Unlock  BACnet enumeration 1 

    F2 – Lock  BACnet enumeration 0 

 Full-Cycle Lock  F1 – Pulse Unlock BACnet enumeration 2 

 Slider   F1 – Open  BACnet enumeration 1 

    F2 – Close  BACnet enumeration 0 

    F3 – Stop  Enumeration 1024 

 Dual-Cycle Lock  F1 – Pulse Unlock BACnet enumeration 2 

    F2 – Lock  BACnet enumeration 0 

    F4 – Unlock  BACnet enumeration 1 

 

Corsair reads door status information from a device using up to three properties. They are ‘door-status,’ 

‘lock-status,’ and ‘secure-status.’ The developer uses the data source setup parameters to tell Corsair 

which properties are present on the device he is using. If all three status properties are available, the 



186 | P a g e  
 

developer will usually choose to not read the present value of the ACD object to minimize 

communications. Present value is a required property of the object. The status properties are optional 

so they may not be available with every system. The following sections explain how the driver handles 

BACnet communications for door records. 

Operation with no property reads 

If none of the 3 status properties are available and the present value is not readable Corsair cannot 

make good choices about how to display the door status. This is the least desirable operating mode. One 

interface cannot tell when another interface has opened a door. It will leave the Secure and DPSI bits 

untouched until the interface is used to operate the door. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

 

       Type – Slider 

Type – Monitored 

              Operation – Any 

                          Turn on Secure and DPSI 

Type – Half Cycle 

               Operation – Unlock 

                            Turn off Secure and DPSI 

                            Turn on Hold_Open 

                Operation – Lock 

                               Turn on Secure and DPSI 

                               Turn off Hold_Open 

    Type - Full Cycle 

                   Operation – Pulse Unlock 

                                   Turn on Secure and DPSI 

                                    Turn off Hold_Open 

                    Operation – Lock  

                                     Turn on Secure and DPSI 

                                      Turn off Hold_Open 



187 | P a g e  
 

                      Operation – Unlock 

                                 Turn off Secure, DPSI, and Closing 

                                 Turn on Opening 

                       Operation – Lock 

                                   Turn on Secure, DPSI, and Closing 

                                   Turn off Opening 

                   Operation – Stop 

                                   Turn on Secure and DPSI 

                                   Turn off Opening and Closing 

Type – Dual Cycle 

                  Operation – Pulse Unlock 

                                 Turn on Secure and DPSI 

                                 Turn off Hold_Open 

                 Operation – Lock 

                               Turn on Secure and DPSI 

                               Turn off Hold_Open 

                Operation – Unlock 

                               Turn off Secure and DPSI 

                               Turn on Hold_Open 

Operation with only reading the present-value property 
This mode is not ideal, but it may permit the system to function when none of the three status 

properties are available. Operation should be tested. It may enable one interface to see when another 

interface has opened a door. 

Operation with only reading the secure-status property 

This mode may work well for larger systems since it only requires one property read. It gives an accurate 

display of door secure status but no other information. The values are processed in the same way for all 

door types. 

 Value 0 – Secured – Turn on Secure and DPSI 

Value 1 – Unsecure – Turn off Secure and DPSI 

Value 2 – Unknown – Turn off Secure 

 



188 | P a g e  
 

 

 

 

 

 

 

 

Type – Dual Cycle – Always turn off Hold_Open 

 

 

 
Type – Monitored  

Type – Half Cycle 

Type – Full Cycle 

Type – Slider 

Type – Dual Cycle 

 

Operation with reading the present-value and secured-status properties 
Type – Monitored  

Type – Half Cycle 

Type – Full Cycle 

Type – Slider 

Type – Dual Cycle 

Alarms 

BACnet devices can trigger alarms on Corsair by Corsair reading in single Boolean bits using a tag whose 

type is ‘1-bit alarm’ with a size of one. These alarms require one tag of each alarm. Acknowledge status 

is kept within the Corsair interface so acknowledging the alarm on one interface will not acknowledge it 

on another. 

 

Type – Half Cycle – Always turn off Hold_Open 

Type – Slider – Always turn off Opening and Closing 

 



189 | P a g e  
 

The Corsair BACnet driver has some options using BSV ‘bitstring value’ object type. A bitstring value  can 

represent an array of Corsair alarms if the BACnet server device is properly programmed. If the 

Present_Value property of the object is 10 bits long it can be assigned to a Corsair tag whose type is ‘1-

bit Alarm’ with a size of 10. Zooming on the Alarms field of the tag record allows the developer to enter 

10 alarms with indexes 0 through 9. When the BACnet device turns a bit on the corresponding alarm is 

tripped. When the BACnet device turns the bit off the alarm may or may not clear on Corsair based upon 

the setting of the Latching option and the alarms Acknowledge status. 

If Corsair needs to reset the alarm the Present_Value property of the bitstring must be writable. If the 

object has an Out_of_Service property it must be set to TRUE. Note that Corsair will always write all of 

the bits in the string. It will write the reset bit with a zero. All other bits will be written with their status 

as of the last time that Corsair read the Present_Value. Programmers of BACnet devices that use Corsair 

like this need to allow for it in a way that does not lose a new alarm when an existing alarm is reset. 

Corsair can also manually trip an alarm from the Control window which his accessible from the alarm 

summary page. 

BACnet specifies an optional Bit_Text property for the bitstring value object. This can be used to store a 

description for each alarm bit. Corsair cannot use these strings to form the description of the alarm. 

They can be read and possible written as a normal BACnet character string array using a Corsair tag 

whose type is ‘String.’ 

It is possible for Corsair to put alarm acknowledge status into the BACnet device. This is a technique that 

is proprietary to Corsair so it may not be compatible with other software. It is only recommended for 

situations like specialized BACnet shim software that is specifically written to be compatible with the 

Corsair interface. It uses bit in the Bit_Mask property of the bitstring value object to hold acknowledge 

status. The tag type is changed to a ‘4-bit alarm.’ It’s address is set to the Present_Value property. 

Corsair knows by the type that it is to also scan the Bit_Mask property. If the BVS object has an 

Out_of_Service property it must be set to  TRUE. When Corsair resets an alarm it writes a zero to the 

Present_Value bit. The BACnet device must then also zero the corresponding bit in the Bit_Mask 

property. 

Centurion – Response Technologies Centurion Elite 
The Centurion driver is used to communicate with a Response Technologies Centurion Elite Duress 

system. This uses a serial connection. This driver is present in all versions of the Corsair program. A 

corrections license is not required.  

The ‘??’ tag address on a Centurion driver can be used as the parameter C ‘Trigger Switches’ input to a 

‘Trigger Alerts’ block. The Active Switches Result of this block can be used it trigger Alerts on other 

drivers. This tag should only be used on one instance of the block. The ‘??’ .. addresses perform the 

same function. They may be used for other instances of the Trigger Alerts block. 

DIGIFORT – Digifort VMS 
 



190 | P a g e  
 

Digifort Quick Start 

This procedure allows a developer to complete initial testing of the communication between the 

CorsairHMI program and a Digifort VMS server. 

Install the Corsair program on your computer  

Create a c:\corsair folder on your computer. 

Copy the corsair.exe program into it. 

Right-click on the program and send it to the desktop as a created shortcut. 

The Corsair icon should now show on your desktop. 

Right-click on the Corsair icon and pick properties. 

Set the icon to ‘run as administrator’.  This may be under the ‘Advanced’ options. 

Go to the www.corsairhmi.com website. 

Under the Public Downloads find the ‘free 4-hour corsair runtime license’ 

Download the ‘CHMI_Demo4.cky’ license file. 

Place the license file in your C:\corsair folder.  This license will allow the Corsair interface to run for 4 

hours.  After that the interface will shut off.  It can then be restarted for another 4 hours.  There is no 

limit to the total runtime with this license in 4-hour segments. 

Run the Corsair program. 

Click on ‘Users/Change Levels’.   Type ‘admin’ into the password. 

Select the Developer – Administrator option.  Click on OK. 

The lower-right status bar should now include ‘Dev: Admin’. 

Pick the ‘Setup/Computer Properties’ menu option. 

On the Startup Tab pick Development-Administrator. 

On the Security Tab enter a base session name of ‘Corsair’. 

On the Security Tab check ‘Allow Exit’, ‘Allow Minimize’, and ‘Prevent Running a Second Copy’. 

Click on OK to accept the Computer Properties. 

Click on the ‘Setup/Save Properties’ menu option. 

Initialize an Empty Corsair Model  

http://www.corsairhmi.com/


191 | P a g e  
 

Pick the ‘Setup/Model List’ menu option.  Pick ‘Edit/Empty’ to create an empty model. 

From the main menu pick ‘File/Save File’ and OK to save the model data. 

Determine the IP address of your Digifort Server  

Corsair requires a 4-byte IP address for the server.  If you are accessing a server over the Internet and 

you only have a domain name an address will have to be determined.   Pick the ‘Tools/TCP Expert’ menu 

option.  Click on ‘Get IP from Name’.  Type the domain name in the ‘Entered Name’ field.  Click on the 

‘Get’ button.  Write down any discovered 4-part IP address.  A 6-part address will not work with Corsair. 

If the address is not a static IP it may change at some time based upon the server’s Internet Service 

Provider.  The address on the Corsair data source will have to be changed whenever this happens.  

Permanent installations must have static IPs. 

Determine the required Digifort information  

You will need the Digifort User name and password that you will use.  This information will come from 

the administrator of your Digifort server. 

You will need to have a Surveillance Client running on a computer.  It does not have to be the same 

computer that is running the Corsair software.  You will need to know the name of the client’s monitor 

on the Digifort virtual matrix. 

Generate an initial Database  

Click on the ‘Edit/Database/Generation’ menu option. 

Do not use the ‘Empty’ button.  Use the ‘Clear’ button to clear out any generator data. 

Click on ‘Sessions’.  Click on ‘1’.  Enter ‘Corsair’ for the ID of the first session (or computer).  OK twice to 

get back to the main database generator window.  A check should appear next to the Sessions button 

showing that it will generate a session. 

Click on ‘Screens’.  Click on ‘1 Ovr’ to specify an overview screen.  Enter ‘Digifort Screen’ for the ID of the 

screen.  OK twice to get back to the main database generator window.  A check should appear next to 

the Screens button showing that it will generate a screen. 

Click on ‘Drivers’.  Click on ‘D1’.  Enter ‘Digifort Driver’ for the ID of the driver.  Pick ‘DIGIFORT – Digifort 

VMS’ for the type.  Click on ‘Accept’ and not on OK. 

Click on ‘S1’ for Source 1.  Enter ‘Digifort Monitor’ for the ID of the data source. 

Check the ‘Create Reserved Addresses’ checkbox.  Enter the IP address of the Digifort server. 

Click on Oks and Close until you get to the main database generator window.  A check should now 

appear by the ‘Drivers’ button to show that it will generate a driver. 



192 | P a g e  
 

Click on the ‘Generate’ key and answer the ‘OK’ prompt to do the generation. 

Close the Generation window.  Corsair will warn you that you are about to lose unsaved generation 

data.  Click on OK to go ahead and lose the data. 

From the main menu pick ‘File/Save File’ and OK to save the model data. 

Additional Special Setup data entry 

Pick the ‘Edit/Data/Drivers’ option on the main menu.  Arrow up until the ‘Digifort Driver’ cell is 

highlighted.  Press ‘Z’ to zoom. 

Enter the master user name and password.  Arrow to the desired selection and press F2 to edit. 

Escape from the Special Setup window.  Escape from the driver database. 

Pick the ‘Edit/Data/Sources’ option on the main menu.  Arrow up and to the right until the ‘Node’ field is 

highlighted.  Press F2 to edit it.  Type in a value of ‘1’ and press enter for Node 1. 

Arrow left until the ‘Digifort Monitor’ cell is highlighted.  Press ‘Z’ to zoom. 

Arrow through the fields and press F2 to edit each one.  The port number can be left at zero.  The 

Monitor ID needs to be set to the Surveillance client’s monitor name on the virtual matrix  The same 

user name and password need to be entered here. 

Escape from the Special Setup window.  Escape from the Source database. 

From the main menu pick ‘File/Save File’ and OK to save the model data. 

Use the Register Monitor 

Click on the ‘Interface’ checkbox to start run-mode operation. 

Click on ‘Tools/Data Source/Registers’ to open the Digifort Monitor window. 

Use the ‘Get’ buttons to get cameras, monitors, styles, views, users, and Global Events. 

Use the ‘Number’ button to number the cameras with a first value of 1. 

If there are Global Events click on the ‘G Events’ button to view them.  Use the F2 key to enter nonzero 

Corsair numbers on each global event. 

From the main menu pick ‘File/Save File’ and OK to save the model data. 

The following documentation gives more detail as to how to operate the Monitor window. 

Digifort Driver Documentation 

The Digifort driver enables the Corsair program to switch IP camera images on a monitor that is acting as 

a Digifort surveillance client. 



193 | P a g e  
 

An example prison system would have 3 Digifort server computers each recording up to 200 cameras.  

These servers are known as East, West, and Central.  Their IP addresses on the Corsair network are 

1.1.1.1, 1.1.1.2, and 1.1.1.3.  The system is designed with no more than 200 cameras per server.  Each 

camera needs a unique Corsair ID number.  The developer has decided to use the numbers 1 through 

200 for cameras on the East server, 201 through 400 for cameras on the West server, and 401 through 

600 for cameras on the Central server. 

Besides the 600 cameras and 3 servers the network includes 6 operator workstations.  Each workstation 

consists of two computers.  One computer is running Digifort’s surveillance client.  The other computer 

of each pair is running the CorsairHMI program.  These 12 computers use IP addresses from 1.1.1.4 to 

1.1.1.15.  The six workstations are identified by their user.  They are known as Bob, Carol, Ted, Alice, 

Sally, and Roger. 

The Digifort developer must enter 200 cameras into each of the 3 servers.  He assigns them 600 unique 

names.  He sets up user names and passwords for each of the 6 users.  He sets up permissions for each 

user.  Bob, Ted, and Alice can view the east sallyport camera but Carol, Sally, and Roger cannot.  Sally is 

the only one that can see the booking camera. 

The Digifort developer must create a seventh user name and password for a ‘master’ user.  This user 

must be able to see any camera that can be viewed by any of the six users.  The Master user login is 

used by the Corsair program to get the list of cameras from each server. 

The Corsair developer intends for each of the 6 workstations to be using identical Corsair model files.  

The Corsair authority system will be used to determine the capabilities of each computer.  He creates 6 

session records named Bob through Roger.  Each session name must have an index value entered for 

use with session-indexed tags.  Index numbers from 0 to 5 are entered. 

The developer then creates a driver record with the Digifort driver type. 

 

There are no IP addresses on the driver record.  Zooming on this record allows him to enter the Master 

user name and password. 



194 | P a g e  
 

 

The next step is to create Data Source records under the driver.  A data source record can represent a 

Digifort server, or a surveillance client monitor, or both.    This system with 3 servers and 6 monitors will 

require 6 data source records.  It could also be done with 9 data sources – 3 that represent servers and 6 

that represent monitors. 

 

Each data source is set to be ‘Real’ or ‘Live’.  A data source record that represents a server needs the IP 

address of that server.  A data source that represents a monitor but not a server gets a zero IP address.   

Each record has a node value that matches the index of the corresponding session.  Other drivers do not 

use the node number in this way.  When a tag on this driver is ‘Session-indexed’ the index number on 

the session record corresponds to the node number on a data source.  That data source describes a 

monitor on the virtual matrix that is used by that session. 

This configuration assumes only 1 Digifort ‘Monitor’ per Surveillance client workstation.  If more 

monitors are created on the virtual matrix additional data source records will have to be developed.  

There will still be only three sources for the servers. 

The next step for the developer is to zoom on each data source record. 



195 | P a g e  
 

 

The port number is the port that Corsair will use to connect to the server.  If it is left at zero the default 

value of 8601 will be used.  The name of the monitor must be entered.  Monitor names must be unique 

throughout the whole virtual matrix system.  There cannot be a ‘Monitor 1’ on Bob’s client and also on 

Carol’s client.  The monitor’s Viewing user name and password are entered here.  If a workstation 

surveillance client has 2 Digifort monitors they will have different ID names but the same user name and 

password. 

The Replace options are normally set to ‘No’.  This will cause Corsair to use the 

‘DoNotReloadSameStyle=TRUE’  and ‘DoNotReplaceSameObj=TRUE’ parameters when loading a screen 

style and showing an object.  Setting them to ‘Yes’ eliminates these parameters.  Consult the Digifort 

documentation for information about how they work.  These parameters are used on data sources that 

are servers.  They have no effect on data sources that only represent monitors. 

The next step is to load the camera list for each of the 3 server data sources.  These are the 3 records 

that have nonzero IP addresses.  It is done from the Digifort driver’s register monitor window. 



196 | P a g e  
 

 

The Camera ‘Get’ key loads the camera database from the server using the Master User name and 

password.  This list is opened with the ‘cameras’ button. 

 

The database contains the Corsair number for the camera, a camera name and a description.  The type 

of the camera record is shown along with a Model designation.  Some Master users are allowed to see 

an address for the camera. 

The type field show which records represent IP cameras.  The developer may wish to delete other types 

of records by blanking out their fields.  The remaining cameras need to be numbered.  This can be done 

automatically using the register monitor windows ‘number’ button or it can be done manually by 



197 | P a g e  
 

entering a nonzero number into each record.  Corsair cannot switch to a camera that has a zero number.  

The developer may wish to use the database ‘sort’ option when he is done numbering the cameras. 

Cameras are only listed under server data sources with nonzero IP addresses.  The camera databases 

under data sources with zero IPs are not used.  Each camera that is listed under a driver must have a 

unique nonzero Corsair number.  This is enforced by the decision to use the numbers 1 through 200 for 

cameras on the East server, 201 through 400 for cameras on the West server, and 401 through 600 for 

cameras on the Central server. 

The Monitor ‘Get’ key loads the active monitors database from the server using the Master User name 

and password.  This list is opened with the ‘Monitors’ button. 

 

This database shows the active virtual matrix monitors at the time the ‘Get’ button is pressed.  This data 

can be constantly changing.  The developer must clear and then get the database again to get a current 

value.  The Active Monitors database is meant as a diagnostic aid for developers. 

The developer must be sure to save the Corsair model file anytime changes are made to the cameras 

and monitors databases. 

The ‘Display’ buttons on the Digifort Monitor are used to test camera switching to different spots on the 

monitor. 

The ‘Styles’ button is used to view a list of screenstyle numbers.  The ‘Get’ button reads style numbers 

from a server.  Each nonzero number represents a different pattern of monitor spots on a screen.  The 

‘Set’ button can be used to send an empty style to a monitor. 

The ‘Views’ database lists public screen views that are available to all surveillance clients.  It does not list 

screen views that are limited to a user.  Each view has a name and a screen style number.  Corsair can 

send a view to a monitor if the developer gives it a nonzero Corsair number.  Corsair numbers must be 

unique across servers.  The same number cannot be used for a view on more than one server. 

The ‘Users’ database lists user names that have been entered into the Digifort server.  The Master and 

Viewer user names that are entered under the driver and data source record must match entries from 

this list. 

The ‘Global Events’ database lists global events that have been configured in the server.  These are not 

manual events.  They are global events that the Master user has the right to access.  Each event has a 



198 | P a g e  
 

name and a description.  Corsair can trigger an event if the developer gives it a nonzero Corsair number.    

These numbers must be unique across servers. 

The ‘Manual Events’ database lists manual events that have been assigned to cameras in the server.  

Each event has a Corsair camera number, a name, and a description.  Corsair can trigger the event if the 

developer gives it a nonzero Corsair number.  These numbers must be unique across servers and not 

collide with any of the numbers that have been assigned to global events. 

Corsair numbers can be repeated across Cameras, Views, and Events.  There can be a number twelve on 

each.  There cannot be two Cameras that both have the number twelve. 

The Event Tigger button is next to a number entry box.  The developer can enter a Corsair number that 

matches either a Global or Manual event.  When the Trigger Button is pressed the event is triggered. 

There are several Reserved Tag addresses for use with the Digifort driver.  They can be created using the 

‘Res Addr’ button when doing single-record editing of the data source record. 

 

 

Some of the reserved addresses for tags with the Digifort driver are designed to not use session-indexed 

(‘SI’) addressing.  These tags may be indexed as conventional arrays with a size that is greater than 1.  



199 | P a g e  
 

Each index of these tags corresponds to a monitor.  If a value is written to index 3 of the tag it applies to 

the monitor on the data source with a node number that is set to 3. 

Some of the reserved addresses for tags with the Digifort driver are designed to use session-indexed 

(‘SI’) addressing.  These addresses have a ‘ SI’ suffix.  The array size field is left at 1.  When a value is 

written to one of these tags Corsair looks at the address index value of the computer’s session record.  It 

finds the data source whose node address matches that value.  The value is used for that monitor.  

Typically the session-indexed version of the address is what is used for hook codes. 

User Login IP Security 

The Digifort administrator may want to use User Login IP security to guarantee that users only use the 

correct surveillance clients.  In our example system there must be two IP addresses entered for each 

server – the address of the user’s surveillance client and the address of the user’s Corsair computer. 

Surveillance Client Configuration  

The Surveillance client will need to have at least one monitor configured for use on the Virtual Matrix.  

This monitor gets a name that will be used for the ‘Monitor ID’ entry under the data source record.  

There are two check boxes in the Virtual Matrix settings: 

 Show object origin information 

 Blink border when an object is loaded on the monitor 

Both of these checkboxes should not be checked. 

Screen Style Tags 

The Digifort system comes with some standard screenstyle layouts.  These divide a computer monitor 

into a number of sections called ‘Spots’.  Spots are numbered starting at one. The Digifort administrator 

can create custom screenstyles.  Each standard or custom screenstyle has a unique nonzero 

identification number.  It is shown on the right side of the monitor when the administrator is modifying 

the style. 

There are two tags that are used to set screenstyles into a monitor.  They are ‘Set Screenstyle’ and ‘Set 

Screenstyle SI’.  Both are double integers.  They are written with nonzero screenstyle identification 

numbers. 

The ‘Set Screenstyle’ address can be an indexed address.  If it has a size of 1 the style is applied to the 

monitor corresponding to the data source that the tag is on.  If the address has a size of more than one 

which index is written determines what monitor is used.   If a style identification number is written to 

index 3 of the tag it applies to the monitor on the data source with a node number that is set to 3. 

The ‘Set Screenstyle SI’ address is session-indexed with a size of 1.  When a value is written to this tag 

Corsair looks at the address index value of the computer’s session record.  It finds the data source 

whose node address matches that value.  The style is sent to that monitor. 



200 | P a g e  
 

View Tags 

The Digifort system can save public screen views.  Corsair can display these screen views on a monitor.  

This is done with two tags.  They are ‘Set View’ and ‘Set View SI’.  Both are integers.  They are written 

with nonzero Corsair numbers that match entries in the Views database. 

The ‘Set View’ address can be an indexed address.  If it has a size of 1 the view is applied to the monitor 

corresponding to the data source that the tag is on.  If the address has a size of more than on which 

index is written determines what monitor is used.  If a number is written to index 4 of the tag it applies 

to the monitor on the data source with a node number that is set to 4. 

The ‘Set View SI’ address is session-indexed with a size of 1.  When a value is written to this tag Corsair 

looks at the address index value of the computer’s session record.  It finds the data source whose node 

address matches that value.  The view is sent to that monitor. 

Corsair uses the ?? user name and password to set screen views. 

Spot Camera Tags 

The ‘Spot # Camera’ tags are integer tags that can be used to control what camera appears in each spot 

of a screenstyle.  Spot 00 is used for a full-screen view.  Spots 01 through 16 are for individual spots on a 

screen style (layout).  The addresses are available in both normal and SI ‘Session-Indexed’ versions. 

Writing these tags with zero has no effect.  If Corsair writes the value 6 into an index of the ‘Spot 02 

Camera’ tag it will look through each server’s camera database.  It will search for a record with a number 

of 6 and a name that is not blank.  Once it finds a camera it must find a monitor.  This is determined 

differently for a normal tag versus a session-indexed tag.  If it is a normal tag the index number that is 

written with the value is used to determine the monitor.  If it is session-indexed the addressing index of 

the computers base session is used to determine the monitor.  If a monitor is available the computer 

issues an HTTP ShowObject command to the Digifort server that contains the camera.  This command 

uses the spot number that is indicated by the tag address. 

Corsair uses the View user name and password to set a camera on a spot. 

Compound-Indexed Spot Camera Tag 

The regular Spot # Camera tags do not allow dynamic indexing across spot numbers.  There is a special 

address that allows this capability.   This ‘Any Spot Camera’ address has unique operating rules.  It is 

session-indexed with an array size that is greater than 1. 

To be continued . . . 

Starting and Stopping Recording  

Corsair can start and stop recording on individual cameras.  This requires some changes in the Recording 

Settings on the server.  Instead of ‘Continuous Recording’ the ‘Recording by Schedule’ option needs to 



201 | P a g e  
 

be selected.  The Recording Scheduling button leads to the Scheduling window.  The ‘Record by Event’ 

action is used when Corsair is to start and stop the recording. 

The ’Start Camera Recording’ tag address is a double integer that is written with a nonzero camera 

number to start recording of that camera.  It is not indexed so it has a size of 1. 

The ‘End Camera Recording’ tag address is a double integer that is written with a nonzero camera 

number to stop recording of that camera.  It is not indexed so it has a size of 1. 

The ‘Camera Recording Switches’ tag is an array of switches with one index for each camera.  When 

index 6 is turned on recording starts on camera number 6.  When index 12 is turned off recording stops 

on camera number 12.  The tag should have an array size one higher than the highest camera number. 

Corsair uses the Master user name and password to start and stop camera recording. 

Camera Privacy 

The ‘Set Camera Privacy’ tag address is a double integer that is written with a nonzero camera number 

to activate privacy on that camera.  It is not indexed so it has a size of 1. 

The ‘Reset Camera Privacy’ tag address is a double integer that is written with a nonzero camera 

number to release privacy on that camera.  It is not indexed so it has a size of 1. 

The ‘Camera Privacy Switches’ tag is an array of switches with one index for each camera.  When index 6 

is turned on privacy is activated on camera number 6.  When index 12 is turned off privacy is 

deactivated on camera number 12.  The tag should have an array size one higher than the highest 

camera number. 

Corsair uses the Master user name and password to switch camera privacy on and off. 

Camera Privacy Groups 

Corsair supports the development of privacy groups.  A privacy group is a list of cameras whose privacy 

can be activated or released from a single tag.   Each privacy group gets a nonzero number to identify 

the group.  Each group can contain a large number of cameras. 

The ‘Set Group Privacy’ tag address is an integer that is written with a privacy group number to activate 

privacy for the cameras on that group.  It is not indexed so it has a size of 1. 

The ‘Reset Group Privacy’ tag address is an integer that is written with a privacy group number to 

release privacy for the cameras on that group.  It is not indexed so it has a size of 1. 

The ‘Group Privacy Switches’ tag is an array of switches with one index for each group.  When index 6 is 

turned on privacy is activated for the cameras of group number 6.  When index 12 is turned off privacy is 

deactivated for the cameras of group number 12.  The tag should have an array size one higher than the 

highest privacy group number. 



202 | P a g e  
 

Corsair uses the Master user name and password to switch camera privacy groups on and off. 

Alerts 

Corsair can trigger global or manual events on a Digifort server.  One way to do this is by writing a 

nonzero Corsair number value to the ‘Trigger Event’ tag.  The program first looks at the Global Events 

database for a matching number.  If it does not find it then it goes to the Manual Events database.  

When it finds the number if the Master User has the right the event is triggered. 

A common way to trigger Digifort events is using the Corsair ‘Trigger Alerts’ block.  The block is 

documented in the Corsair Designer manual.  The driver includes two addresses that are used as 

parameters on the block and a third that it uses for itself. 

The ‘Alert Active Switches’ tag is used for the Result parameter of the ‘Trigger Alerts’ block. 

The ‘Alert Done Switches’ tag is used for Parameter F of the ‘Trigger Alerts’ block. 

The block’s Parameter C gets a memory tag or a tag from another driver. 

The developer enters in Corsair numbers for the events associated with each element of these tags.  This 

is done from the ‘Alerts’ button on the register monitor.   

Corsair uses the Master user name and password to trigger Digifort events. 

Multiple Camera Switches 

Corsair can be used to simultaneously switch camera views on multiple spots of multiple monitors from 

a single trigger source.  This may be called ‘salvo switching.   A database can be set up to describe 

thousands of Camera/Monitor/Spot combinations from hundreds of triggers. 

To be continued . . . 

 

DXI – Harding Instruments DXI Intercom 
Corsair can control a Harding MicroComm DXI intercom using an Ethernet connection. 

 

DXL – Harding Instruments DXL Intercom 
Corsair can control a Harding MicroComm DXL intercom using an Ethernet connection. 

Harding DXL Configuration 

The Harding programmer must define a Host Port on an Exchange in a DXL system.  The Host Port must 

be set to be Ethernet and not Serial.  It needs an IP address that is compatible with the network that the 

Corsair computer is on.  The TCP/UDP port number should be left at the default value of 10000 for the 

first host port on the Exchange.  If there are multiple Exchanges each one gets a unique IP address but 



203 | P a g e  
 

each one can use the same port number of 10000.  If more than 20 computers talk to a single exchange 

more host ports will have to be created.  The next host port should get an address of 10001, then 10002, 

and so on. 

The next step is to define the host port protocol.  The protocol to use is ‘ASCII Messages’, not ‘Register 

Based Messages’. 

The Messages tab of the Harding software has some checkboxes for options for the messages.  On 

option is for status messages to ‘Use Response Message Format’.  It should not be checked.  Response 

messages should have the ‘Respond to All Host Commands’ option checked.  The ‘Use Status Message 

Format’ option should be checked.  Under Acknowledgments the ‘Wait for Acknowledge Messages’ 

option should not be checked.  These settings are different that the Harding software’s default settings. 

The Monitor tab of the Harding software has a ‘Monitor Connection for Faults’ checkbox.  It should be 

checked.  The Timeout should be set for the default 10 seconds. 

Corsair Development for the DXL  

 

 

The Corsair program needs to have the development level set to ‘Admin’ so that development work can 

start.  A driver record must be created.  It gets the ‘DXL - Harding Instruments DXL Intercom’ type. The 

ID can be any desired name.  The PLC network IP address on the driver must be set to match the DXL 

intercom Exchange. 

The next step is to zoom on the drivers Data Source (‘PLC’) zoom field to enter one or more data source 

records. 

Each data source corresponds to a master.  Anything can be entered for the ID name.  The Node number 

of the data source must be used to enter the master’s nonzero dial number.  Master dial numbers 

greater that 65535 will not work here.  The Real flag must be set to ‘Yes’. 

Most systems will require session-indexed tagging to be used for some Harding tags.  With these 

systems it is not necessary to create a separate data source for each master station.  Create just one 

source and give it the dial number of the first master in the system. 

At this point Register Monitoring for the data source may be used to check communications to the 

intercom. 



204 | P a g e  
 

 

If no tags have been created the master number on the title bar is the dial number of the master that 

the window is controlling.  It can be used to originate calls to a station, to another master, or to initiate a 

page.  

The next step is to create tags on the data source record.  Select ‘Edit’ ‘Data’ ‘Sources’ and select the 

intercom data source.  Pressing F6 opens data source single-record editing.  The ‘Res Addr’ button is 

used to create tags on the data source with addresses that will work for the driver.  The sizes of some of 

these tags will have to be adjusted as explained later. 

After tags have been created the ‘List’ and ‘Groups’ buttons on the Register Monitor are used to open 

the auxiliary databases that are used by the driver.  Remember that any changes to an aux database are 

saved as part of the .cap Model file.  There will be no warning prompt if the developer exists without 

saving aux database data. 

The developer must define a unique index number for each master station, intercom station, station 

group, and paging zone that is used in the system.  Master stations get the first index numbers starting 

at 1.  They correspond to session index values in the Sessions database. 

The first database to work with is the master list. 

 



205 | P a g e  
 

The master list corresponds Corsair sessions to master station dial numbers.  Any computer that uses 

the DXL driver has a base session name.  This is the name that is set using the Security tab of the 

Computer Properties window.  The index of that session in the sessions database must be a nonzero 

value.  The first column of the master list is the call (dial) number of the master.  The second column is 

the corresponding Corsair session index number.  Both columns must be nonzero for the row to be valid.  

A name for the master should be entered.  The optional comments are for the architecture printout. 

Assume that the sessions database has three records: 

Central Control   -  session index 1 

North Control  - session index 2 

South Control – session index 3 

Assume that the master list has three records: 

Call #101  - Session Index 1 – Name ‘Central Control Intercom Master’ 

Call #201 – Session Index 2 – Name ‘North Control Intercom Master’ 

Call #301 – Session Index 3 – Name ‘South Control Intercom Master’ 

The Central Control computer will be using the intercom master with dial number 101.  The North 

Control computer will be using the intercom master with dial number 201.  The South Control computer 

will be using the intercom master with dial number 301. 

The next aux database to work with is the Intercom Station List. 

 

The Call # is the dial number for each station.  The Tag Index is a nonzero number that locates the 

intercom station in an array of tag data.  These tag indexes normally start after the range of values that 

is used for the indexes in the Master list.  They can be entered into the database in any order.  The same 

tag index should not be used for more than one intercom station.  The same tag index should not be 



206 | P a g e  
 

used for both a station and a master.  Both the Call # and Index columns must be nonzero for the row to 

be valid.  A name for the station should be entered.  The optional comments are for the architecture 

printout. 

The ‘Master Names’,’Master Index’, ‘Master Numbers, ‘Master Comment A, and ‘Master Comment B’ 

arrays should all be sized slightly larger than the maximum count of masters in the system.  These tags 

are never session-indexed. 

The ‘Station Names’, ‘Station Index’, ‘Station Numbers’, ‘Station Comment A’, and ‘Station Comment B’ 

arrays should all be sized slightly larger than the maximum count of stations in the system.  These tags 

are never session indexed. 

The ‘Enable Switch’, ‘End Call’, and ‘Next’ tags should all be left with a size of 1.  Usually session indexing 

will be set to ‘Yes’ for these tags.  If the interface turns on the button with the ‘Next’ address Corsair 

looks to see if the tag is session indexed.  If it is not session indexed Corsair uses the dial number that is 

stored in as the node address of the data source.  If it is session indexed Corsair finds the dial number 

for its session in the Master List aux database.  In either case, if the dial number is zero the ‘Next’ 

command is not sent to the DXL. 

 

 

EIP Devices 
Xx 

 

EIP ID – ID Readers 
Xx 

Email Command 
The Email Command driver is used to control the email system from Corsair tag data.  Different reserved 

tag addresses are used for different parts of the email data tree. 

Ewert CAN – CANbus 
The Ewert driver is designed for CorsairHMI to read data from a CANbus system using the CANdaptor 

module from Ewert Energy Systems (www.ewertenergy.com).  This adaptor hooks to the Corsair 

computer using a USB connection.  With the proper driver it emulates a serial port.  The first step is to 

get the driver from Ewert, install it on the computer, and plug in the adaptor.  The operating system will 

determine what COM port is used by the adaptor.  A possible path to see what selection it has made 

from Windows would be Control Panel, System, Device Manager.  Most of the time the port will be 

http://www.ewertenergy.com/


207 | P a g e  
 

within the range of COM1 to COM4 although it could be a higher number.  It is recommended to always 

plug the adaptor into the same USB port on the computer to hope that the serial port number does not 

change. 

The Setup,Comms Port Properties menu selection is used to specify parameters for serial ports.  The 

baud rate that is entered here is not the baud rate of the CAN network.  A nonzero value must be 

entered for all serial ports including USB.  9600 baud, 8 data, no parity, and 1 stop bit is a recommended 

setting.  Port numbers above 4 may require entry of a port name. 

A driver record must be created in the Corsair database for the CANdaptor.  Each driver record 

corresponds to only one adaptor so multiple records will be needed if there are multiple adaptors.  The 

proper Port number must be entered into that field of the driver record. 

After the driver is created one or more Data Sources need to be created under it.  They are made by 

zooming on the driver’s Zoom field.  Each data source needs a name and it needs its ‘Real’ field set to 

‘Yes’. 

Zooming on the driver record opens the special setup data for the CANdaptor. 

 

It is here that the Baud rate of the CANbus must be entered.  Corsair defaults to 500 K baud but other 

standard rates are available.  There are places to specify up to 2 masks and 7 filters.  For now they 

should not be used. 

The next step is to hook the equipment to the CANdaptor and run the Corsair interface.  The View, 

Source Diagnostics menu option can be used to verify that the driver is online and ready and to see if 

CAN frame data is arriving at the computer.  Each CAN frame shows as a good read on the Source 

Diagnostics window. 



208 | P a g e  
 

A next step may be to go to the Corsair Comms Trace window to see the data packets that Corsair is 

receiving from the CANdaptor.  The format of these packets is explained by the Ewert documentation.  

One thing to observe is if they begin with the letter ‘T’ or with ‘X’.  A ‘T’ packet has an 11-bit standard ID 

value.  A ‘X’ packet has a 29-bit extended ID value. 

The documentation for the CANbus equipment should show if it uses 11 or 29 bit IDs and how it formats 

its data packets.  If there are multiple pieces of equipment on the bus it must be verified that there are 

no duplications in frame IDs. 

Filtering is the process of eliminating unneeded CAN frames from the data stream so that only the 

desired ones are used.  The first possibility for filtering is to do all or some of it in the CANdaptor 

module.  It supports up to 2 mask values that work in conjunction with up to 7 filter values.  Frames that 

are filtered out in the module do not have to be processed by Corsair which is a key to reducing the 

programs CPU utilization. 

The first step in applying CANdaptor filtering is to turn on one or both masks by setting the ‘Use Mask’ 

option to ‘Yes’.  The mask must be set to match an 11-bit standard or 29-bit extended frame ID.  The 

mask hex value sets what bits of the incoming frame ID are checked by the filter.  The mask can be a 

maximum of hexadecimal 7FF for an 11-bit ID or hexadecimal 1FFFFFFF for a 29-bit ID.  Mask bits that 

are set to 1 are checked by the filter.  Mask bits that are set to 0 are ignored by the filter.  A mask value 

of 1 (one) would mean that only the least-significant bit of the id is the only one checked.  

After one or both mask values are setup at least one filter value must be set.  The ‘Use Filter’ option 

must be set to ‘Yes’.  It must be connected to the correct mask, either mask 0 or mask 1.  The filter 

values frame ID must be set to 11 or 29 bit to match the mask.  The filter value tells the CANdaptor what 

values to accept in the ID.  It can be as high as hex 7FF for an 11-bit ID or hex 1FFFFFFF for a 29-bit ID.  

If all bits are on(1) in the mask the incoming ID must exactly match the filter value for a frame to be 

accepted.  If the mask is hex 7FF for an 11-bit system and the filter value is hex 3CB then only frames 

with an ID value exactly equal to hex 3CB will be accepted. 

A mask value of hex 70 would correspond to a binary value of 01110000.  A filter value of hex 50 would 

correspond to a binary value of 01010000.  Only three bits of the ID of each incoming frame are 

checked.  The following possibilities exist: 

Frame ID Hex        Frame ID Binary    Status 

D3                           11010011               Accepted 

70                           01110000                Rejected 

DC                           11011100               Accepted 

63                           01100011                Rejected 



209 | P a g e  
 

One mask can be used with as many as 7 different filter values.  If any of the mask-value combinations 

allow it the packet is accepted.   If a mask is hex 7FF for an 11-bit system and filter values of hex 3CB and 

3CC are used then frames with ID values equal to hex 3CB or hex 3CC are accepted.  Any other incoming 

ID will be rejected. 

The next level of filtering is done by zooming to special setup data on the data source records.  This 

filtering is done by the Corsair program so it requires more work by the computer than filtering done by 

the CANdaptor. 

 

Each data source can receive 11-bit or 29-bit identifier frames but not both.  One data source can be set 

for 11 and another for 29. 

Filtering of the incoming ID value can be done at the data source level.  If this filter is enabled 3 

hexidecimal values must be entered – a mask, a minimum, and a maximum.  Corsair ANDs the incoming 

ID value with the mask.  If the result is less than the minimum or greater than the maximum that frame 

is rejected on this data source.   All three values must be entered in hex without a leading ‘0x’.  They can 

be as great as 7FF for 11-bit IDs and 1FFFFFFF for 29-bit IDs. 

To use the Corsair data source ID filter the ‘Use’ field must be set to ‘Yes’.  If the Mask value is set to hex 

7FF with an 11-bit ID system the minimum and maximum values are checked against all of the bits of the 

incoming ID.  If the minimum is hex 12 and the maximum is hex 1FF then IDs outside of that range are 

rejected. 

If the Filter mask is set to hex 0F (binary 00001111), the minimum is set to 3, and the maximum is set to 

5 then the following possibilities exist: 

Frame ID Hex        Frame ID Binary    Status 

D3                           11010011               Accepted 

72                           01110010                Rejected 

D5                           11010101               Accepted 



210 | P a g e  
 

66                           01100110                Rejected 

Corsair tag addresses for the CANdaptor driver consist of a series of one or more instructions.  Corsair 

requires these instructions to understand what it is to do with the CAN data packet.  Each instruction 

begins with a 4-letter instruction name.  The name is followed by 0, 1, or 2 numeric parameter values.  

Parameter values are separated by commas.  Instructions are separated by semicolons.  A possible 

address would be: 

BYTM 0,FE; BYTP 3,2 

This address consists of two instructions.  Instructions are separated by semicolons.  No semicolon is 

needed at the end of the last one.  There can be as many as 16 put together to form a complete address.  

The possible instructions are shown under Tools, TCP Expert, Protocol Data, CANbus Instructs. 

This address starts with a BYTM instruction.  It has two parameters, a decimal 0 and a hexadecimal FE.  It 

is followed by a BYTP instruction.  It also has two parameters, a decimal 3 and a decimal 2. 

Spaces may be inserted between parts of the address to improve readability.  Instruction names are 

always 4 characters.  Upper case is preferred but lower case is allowed. 

The number and type of parameter values varies with the instruction.  Some parameters are signed 

integers that can be positive or negative.  Negative values are preceded with a minus sign.  Positive 

values should not have a plus sign.  Some parameters are unsigned integers that cannot be negative.  

Some parameters are hexadecimal numbers.  They use the digits from 0 to 9 and letters from A to F.  

The letters can be upper or lower case but upper is preferred. 

After a starting address for a tag is entered the developer can zoom to the tag data monitor.  The 

address that is shown on that window is Corsairs understanding of that address.  It should look like what 

the developer expects.  

Instructions are divided into 3 different categories, ‘Matching’, ‘Positioning’, and ‘Scaling’.   They should 

be entered in that order.  There should be only 1 positioning instruction which is the minimum 

requirement for a usable address.  There can be multiple matching and scaling instructions.  The order 

of Matching first, followed by Positioning, and then followed by Scaling should be observed. 

Matching instructions are used to determine if a CANbus frame applies to a tag.  It specifies a data value 

that must be matched for the rest of the instruction to be considered.  If the match is not true that 

frame is not used for that tag. 

Positioning instructions are used to locate data within the CANbus frame.  A frame consists of an 11 or 

29 bit ID value followed by 0 to 8 bytes of data.  The positioning instructions specify where the needed 

data starts within the frame, its size, and sometimes its type. 

Scaling instructions are used to specify mathematical operations that Corsair is to perform on the data 

before it is set into the tag. 



211 | P a g e  
 

The BITP ‘Bit Position’ instruction is a Positioning instruction with two parameters.  The first is an 

unsigned offset to tell where the bit data starts.  It can vary from 0 to 3.  The second value is an unsigned 

bit count.  It cannot be 0.  It can never be more than 64.  The sum of the offset and the count cannot 

exceed 64. 

The BYTM ‘Byte Match’ instruction is a Matching instruction with two parameters.  The first is an 

unsigned offset to tell which data byte is to be matched.  Since there are up to 8 data bytes in a CANbus 

frame the offset parameter can be 0 through 7.  The second parameter is a hexadecimal byte value that 

the frame must match.  It can range from 00 to FF.  The decimal equivalents are 0 to 255 but the data 

must be entered in hex. 

The BYTP ‘Byte Position’ instruction is a Positioning instruction with two parameters.  The first is an 

unsigned offset to tell where the byte data starts.  It can vary from 0 to 7.  The second value is an 

unsigned byte count.  It cannot be zero.  It can never be more than 8.  The sum of the offset and the 

count cannot exceed 8. 

 

GESRTP – General Electric Series 90 TCP/IP 
The GESRTP driver is used by the Corsair program to communicate with General Electric PLCs over an 

Ethernet network. 

 

GPS – NMEA Compatible GPS Serial 
The GPS driver is used by the Corsair program to communicate with a GPS receiver over a serial port.  It 

requires the standard NMEA protocol. 

The NMEA standard calls for serial transmission at 4800 baud, 8 data bits, no parity bit, and 1 stop bit.  

GPS equipment is not required to conform to this.  If a system is not working the manufacturer of the 

equipment should be consulted for the data format that they use. 

InterModel – Inter-Model Data Exchange 
The Corsair program can operate with as many as 100 data models at one time.  The InterModel driver is 

used to move data between data models that are running on the same computer. A computer may be 

running 3 models that correspond to production facilities at 3 different locations.  A fourth model could 

be used for production summary data.  The InterModel driver would be used to copy data from each 

facility to the summary model.  Corsair then totalizes this data for display. 



212 | P a g e  
 

Linux GPIO 
This driver is used with some Linux systems to interact with the GPIO – General Purpose Input/Output – 

connections.  It cannot be used for a Windows system.  Consult with CorsairHMI about compatibility 

with your Linux system. 

Corsair scripting can be used with the GPIO driver for extremely simple control systems.  The integrator 

is responsible for all decisions regarding safety and performance considerations with these systems.  

Corsair was never designed to be general-purpose control software.  Integration with a PLC is usually the 

best alternative for control. 

GPIO is accessed through the Linux sysfs driver system.  It requires for the developer to enter a path 

specification.  He must zoom under the data source record. 

 

 

The ‘/sys/class/gpio/’ example has been shown to work on one Raspberry PI system.   

Linux GPIO Addressing 

Addresses for Linux GPIO tags usually consist of a letter followed by a number.  This may be followed by 

additional special parameter data. 

The first address type is ‘I’ for ‘Input’ data.  I147 refers to an input signal coming from GPIO number 147.  

Typically, this address would be used on an Indicator tag.  The address can be indexed.  A tag with a size 

of 4 would have these elements: 

Element 0   I147 

Element 1  I148 

Element 2  I149 

Element 3  I150 

Corsair tag scanning results in the status of each of these GPIO pins being copied to the tag data.  With 

most systems unhooked pins result in a 1 in the tag. 

The second address type is ‘O’ for ‘Output’ data.  O92 refers to an output signal wired to GPIO number 

92.  Typically, this address would be used on a Switch tag.  This address can also be indexed.  Corsair 

script logic that writes a value to the tag causes the output signal to be changed to match the value. 



213 | P a g e  
 

The third address type is ‘C’ for ‘Count’ data.  These addresses are used for 32-bit Double Integer tags 

that count how many times an interrupt has been tripped.  Other tag types including Integer are invalid 

with C addresses.  C addresses cannot be indexed.  Tag sizes must be 1.   U,6.0 is the recommended data 

format.  The number following the ‘C’ is a GPIO number. 

Count data addresses can be followed by the suffix ‘R’, ‘F’, or ‘B’ for ‘Rising’, ‘Falling’, or ‘Both’.  It should 

be noted that ‘Both’ operations will result in count numbers that are twice what ‘Rising’ or ‘Falling’ 

would yield.  If no suffix is present Corsair defaults to ‘Rising’. 

Each interrupt has a counted value that increments whenever the interrupt is tripped.  This is a modulo 

100,000 value that resets to 0 for the next count after 99,999.  Corsair copies this counted value to the 

tag with the ‘C’ address.  Counts may be accumulating at a higher rate than the copy to the tag.  This 

means that the tag will appear to ‘skip’ values as the count increased. 

The system can use no more than 10 ‘C’ count tags.  Two count tags cannot use the same interrupt 

number.  There can be a C19 and a C20 but never two C20s. 

Corsair includes program blocks that are designed especially for totalization and rate calculations based 

upon a modulo 100,000 value. 

Considerations for systems that use Interrupts 

When a system uses ‘C’ addresses CorsairHMI must set up interrupt processing.  The interrupts are 

triggered by the status of a GPIO input.  The program cannot guarantee correct operation during all 

possible program changes on an interrupt system.  Tags should not be added or deleted and their 

addresses should not be changed with the interface running this driver.  Shut off the interface checkbox, 

make the changes, and then turn on the checkbox.  Failure to heed this may result in crashing the 

Corsair program or shutting down the computer. 

Linux I2C 
The Linux I2C driver is currently an input-only driver that is used to read data into Corsair from 

integrated circuits connected to a Raspberry PI over the I2C bus. 

A few things typically have to be done to the PI to get I2C system to work.  This manual is not a 

comprehensive reference as to how these things are done on a particular PI.  These are some 

suggestions that should be investigated.  Do not type the single-quotes. 

The first thing is to make sure that I2C is not blacklisted in the ‘/etc/modprobe.d/raspi-blacklist.conf’ 

file.  Type ‘sudo nano /etc/modprobe.d/raspi-blacklist.conf’. 

If a line like this appears 

‘blacklist i2c-bcm2708’ 

put a hash mark in front of it to change it to 



214 | P a g e  
 

‘#blacklist i2c-bcm2708’ 

and Ctrl-X and Y to save the file. 

Next open the ‘/etc/modules’ file by typing 

‘sudo nano /etc/modules’ 

and see if there is a line by itself that says 

‘i2c-dev’. 

If there isn’t it needs to be added. 

An i2c-tools package may need to be added with ‘sudo apt-get install i2c-tools’.   

The first step is wiring the device to the PI.  Usually a supply plus, a supply minus, an SCL data line, and 

an SDA data line are all that is needed.  Verify for sure if you want to power the device from a 3.3 or 

from a 5 volt connection on the PI. 

Determine what I2C address the device should be using.  Corsair I2C addresses are always expressed in 

hexadecimal with an ‘0x’ prefix.  0x48 is a common I2C address.  The device should not conflict with any 

addresses that are already in use on the PI.  Some devices can use jumpers to switch to different 

addresses. 

Use the ‘i2cdetect’ tool to see if your device can be seen by the PI.  The syntax may be: 

‘sudo i2cdetect -y 1’ 

It is essential that the device is detected at the correct address before any Corsair development is done. 

Each I2C device should use a separate driver record.  The driver gets the ‘Linux I2C’ type.  There is driver-

specific data that must be entered by zooming on the driver record.  The first item is the file path and 

name.  It is typically set to: 

‘/dev/i2c-1’ 

The next two entries are the buss read and write address.  This is a 7-bit address expressed as a 

hexadecimal number.  The same value needs to be entered into both the buss read and write addresses.  

This is the same number that was returned by the i2cdetect tool. 

Each driver record corresponds to a different chip on the i2c bus.  Each data source record corresponds 

to a different reading of data coming from the chip.  An A to D converter chip may have 4 input 

channels.  There may be 4 different data sources on the driver record for this chip. 

Each data source has a zoom to enter driver-specific data.  The first two items are the Bus Write and 

Read addresses.  They should be set to match the value that was used for the driver record. 



215 | P a g e  
 

The next step for the Corsair developer is to enter the sequence of instructions that Corsair needs to 

setup the chip and read data from it.  Instructions can be entered under the driver record and under the 

data source records.  The instructions under the driver record are executed one time when Corsair starts 

interface operation.  They are typically used to configure options on the chip.  The instructions under the 

data source record are executed each time Corsair wants to read data from the chip.  The interval 

between executions of these instructions can be set by the ‘Idle Pause’ setting on the Data Source 

record. 

Both driver and data source records offer the same 5 instruction options: 

?? 

Read Bytes 

Write Byte 

Finish Write 

Delay 

These instructions are entered in ‘Command-Value’ pairs.  The values can be entered in decimal or in 

hex if the developer types the ‘0x’ prefix. 

Corsair starts execution at the first command of the list and always finishes the list in a single pass.  The 

end of the list is found at the first ‘??’ undefined instruction. 

The ‘Read Bytes’ instruction tells Corsair to read a number of bytes of data from the I2C bus.  The value 

is the desired number of bytes.  ‘Read Bytes’ instructions can be entered under driver records but there 

is no way for Corsair to use these bytes.  A ‘Read Bytes’ instruction is frequently the last instruction of 

the sequence under a data source record. 

The ‘Write Byte’ instruction tells Corsair to write a byte of data to the bus.  The value is the byte that is 

sent.  Corsair will execute multiple ‘Write Byte’ instructions at one time on the bus.  It packs data 

together until it sees an instruction that is not the ‘Write Byte’ type.  It then sends the entire packet at 

one time. 

The ‘Finish Write’ instruction is one option to separate sequences of ‘Write Byte’ instructions.  The value 

of this instruction is not used. 

The ‘Delay’ instruction is used to insert a short time delay in the middle of a sequence of instructions.  

The value is a time in milliseconds. 

A typical sequence for a data source may be to: 

Write bytes to set up the configuration for a data conversion and trigger it. 

Do a very short delay. 



216 | P a g e  
 

Read in data bytes for the result. 

The sequence of instructions can contain multiple ‘Read Bytes’ commands but only the last one can 

provide data to Corsair tags.  After Corsair successfully executes all the instructions it sends the read 

bytes to the tags on that data source.  The address that is entered for the tag determines what it does 

with the data. 

The Linux I2C driver uses a unique format for tag addresses.  Each address consists of a number of parts.  

Each part is an instruction name possibly followed by one or two decimal parameters.  These parts form 

a set of rules for how Corsair processes the data. 

There is a window that shows the instruction names that are available for Corsair I2C tag addresses.  

From the main menu select ‘Tools’’TCP Expert’’Protocol Data’ and ‘I2C Instructs’. 

The instructions are divided into groups.  The first group is for locating data. 

BYTP - Byte Position and Count 

This instruction specifies a group of bytes from the received data.  The first parameter is the offset and 

the second is the count.  If the read specified 3 bytes ‘BYPT 1,2’ specifies using the second and third.  

The sum of the parameters cannot exceed the size of the read. 

RBYTP – Reversed Byte Position and Count 

This instruction works like the BYTP instruction except that it reverses the order of the bytes in the 

specified group.  It is used when the data is sent with the most-significant byte first. 

BITP – Bit Position and Count (Future) 

The second group is for filtering data. 

BYTM – Byte Match 

This instruction looks at a byte value at a defined position in the read.  If it does not match the match 

value the read data is not applied to that tag.  The first parameter is a byte offset starting at zero.  The 

second is the match value. 

BITM – Bit Field Match (Future) 

The third group is for extracting data. 

SHR – Shift Bits Right 

INT – Signed Integer Type 

This instruction defines a field of bits as representing a signed integer value.  The parameter is a bit 

count ranging from 1 to 64. 



217 | P a g e  
 

UNS – Unsigned Integer Type 

This instruction defines a field of bits as representing an unsigned integer value.  The parameter is a bit 

count ranging from 1 to 64. 

The fourth group is used for scaling data. 

ADD – Add Integer 

DIV – Divide Integer 

MUL – Multiply Integer 

SUB – Subtract Integer 

The fifth group is used for indicators. 

OFFLINE – Offline Flag (Future) 

ONLINE – Online Flag (Future) 

 

Usually the instructions are arranged in this group order.  Here is an example address for a Float tag: 

RBYTP 0,2;SHR 4;INT 12;MUL 9;DIV 80;ADD 32 

The RBYTP picks the first two bytes of the data in reverse order.  The SHR 4 shifts out the 4 least-

significant bits of the result. This leaves 12 bits.  The INT 12 instruction sign-extends the 12 bits to get a 

signed value.  It is then multiplied by 9, divided by 80, and 32 is added to it. 

 

 

 

 

MBAP – Modbus Ethernet Application Protocol 
The MBAP driver is the standard driver for communications using Modbus Ethernet. 

 

 

MBASC – Modbus ASCII Serial 
Xx 



218 | P a g e  
 

 

MBEMD – Modbus Ethernet Multi-Drop 
Xx 

 

MBEMDE – Modbus Ethernet Multi-Drop Extended 
Xx 

 

MBMM – Modbus Memory Map 
The Modbus Memory Map driver is used to store data in binary disk files on a computer’s hard drive.  

Corsair tags are used to access data in the file just like they are used to access data from a Modbus-

compatible PLC.  The data is retained through a power failure.  The driver takes care of all necessary 

load and save commands to that the developer does not have to be concerned with them. 

The driver only emulates Modbus 4X holding registers.  It does not do 3X input registers, 0X coils, or 1X 

inputs. 

The first step to set up a Modbus Memory Map data source is to go to Edit/ Data/ Drivers and press F4 

to create a driver record.  Arrow to the ‘Type’ field and press F2, F1, to get the driver type selector.  Pick 

‘MBMM- Modbus Memory Map’ for the type.  Arrow to the drivers name field and press F2 to enter a 

descriptive name.  ‘Memory Map Driver’ is a possibility for this name. 

One or more data sources must be created under the driver.  Arrow to the data source Zoom field on 

the driver and press ‘Z’ to go to the local view of the driver’s data sources.  Each data source 

corresponds to a different disk file.  Press F4 to create as many data sources as desired and enter a 

descriptive ID for each one. 

The Modbus Memory Map driver requires special setup information for each data source.  Press Z from 

the data source record to get to the setup screen. 

The first setup item is the name of the file.  A complete path and file name specification can be used.  

The file can be located on a different computer if the proper path is entered.  Wild card characters like 

‘*’ are not permitted in this file name. 

The second setup item is the 4X register count for the file.  This determines the file size.  2 bytes of file 

space are required for each register.  A register count of 20 generates a 40 byte file with register 

addresses from 400001 to 400020.  The driver allows for a file size that is much larger than the normal 

Modbus limit of 65535 registers.  Tags may be developed with addresses that are greater than 465535. 



219 | P a g e  
 

The ‘Create File if not existing’ Yes/No option must be set to Yes initially so that the Corsair program 

creates the disk file.  It may be set to No after that if desired.  

The ‘File is Shared’ Yes/No option tells the Corsair program if something else may write data to the disk 

file.  This could be another computer, another program on the same computer, or another application 

running under the same Corsair program.  If the file is shared the driver will observe different rules 

when writing data to the file.  If it is possible to set the Shared option to No there will be a slight 

improvement in performance. 

The ‘Periodic Refresh Time’ setting determines how often Corsair reads the file from the disk into 

memory.  If it is set to zero Corsair only reads the file at startup.  If it is set to 1 minute Corsair reads the 

file at startup and then at 1 minute intervals.  Corsair always writes the file immediately when a tag 

value is changed.  If a tag value is changed on a shared file Corsair will open the file with a lock, read it 

in, change the data, and then write the file and close it in one operation. 

After the data source is created and the setup data is entered tags must be created on the data source.  

Zoom on the data source’s ‘Tags’ zoom field.  Each tag that is created needs a 4X register starting 

address.  Corsair will consider the type and size of each tag to calculate and display the end address.  

These must be checked against the files 4X register count.  If the drivers register count is 100 tag ending 

addresses must not be greater than 400100. 

Bit addresses for tag types like Switch and Indicator are entered by placing a slash after the register 

address followed by a bit number that ranges from 0 to 15.  0 is the least significant bit and 15 is the 

most significant.  ‘400023/5’ is an example of a valid bit address. 

Modbus addresses beginning with 0, 1, or 3 are not valid for tags created under this driver. 

MBPUSH – Modbus TCP Push 
The MBPUSH driver is a special-purpose driver used to ‘push’ data from a Corsair computer to another 

device.  The Corsair computer that contains the driver is called the ‘Local’ computer.  The other device is 

the ‘Host’ device.  It may be a PLC that uses the Modbus TCP protocol or it may be another computer 

running Corsair.  They are interconnected through Ethernet and may be across the Internet. 

Most applications use this driver for applications where the Local computer does not have a fixed static 

IP address on the Internet.   Its address may change at the discretion of the Internet Service Provider.  

The Host device must have a known fixed IP address on the Internet.  It will be accessed through the IP 

address and not through a domain name. 

The driver uses the Modbus TCP protocol with the Local computer acting as a ‘client’ and the Host 

device acting as a ‘server’.  It defaults to the normal Modbus port 502 but other port numbers can be 

used. 

The driver does ‘pushes’ and ‘pulls’ of data.  A push is when the Local computer writes data into the 

Host using Modbus ‘Write’ functions.  A pull is when the Local computer reads data from the Host using 



220 | P a g e  
 

Modbus ‘Read’ functions.  The developer does not have to configure the individual pushes and pulls.  

Corsair does this automatically from the tag data. 

The Local Corsair computer has to be setup to match the network that it will be connected to.  A proper 

gateway address will have to be entered into the Ethernet adapter configuration if the computer is to be 

used on the Internet. 

The first step in setting up this driver is to create a driver record and give it the MBPUSH type.   

Connection timeout and connection retry times are entered on the driver record.  The IP address on the 

driver record is not used. 

One or more data source records are created under the driver record.  A data source record needs the 

following fields defined: 

Real – Set to ‘Yes’ 

IP – Set to the fixed IP address of the Host device 

Node – Set to a nonzero Modus ID value 

Timeout – Used to determine the time a communication is allowed to complete 

Pause – Idle time between communications, used to control network traffic 

There are some setup parameters for the data source record that are specially defined for this driver.   

They are access from the driver record by pressing the Zoom (Z or F7) key while not on a zoom field.  

They include: 

TCP Port number 

Close Socket During Pause? 

Use Extended Protocol? 

The TCP port number parameter defines the port number that is used for the communication.  If it is set 

to zero the normal Modbus TCP port 502 is used. 

The ‘Close Socket During Pause’ Yes/No option is set to Yes if the developer wants Corsair to close the 

communications socket after each push or pull during the pause period.  If pipelining is selected this 

option is ignored and the socket is kept open. 

The ‘Use Extended Protocol’ Yes/No option can be set to Yes only if the Host is a computer running the 

Corsair program and acting as an MBHR host.  It must be set to No if the Host is a PLC. 

Extended protocol changes the acceptable range of Node numbers (Modbus IDs) from 1 -255 to 1-

65535.  It changes the maximum length of a push from 100 registers to thousands of registers.  It allows 



221 | P a g e  
 

holding register addresses greater than 465535.  With proper address configuration a single extended 

protocol push can transfer data for thousands of tags. 

Tag configuration for this driver works differently than with other Corsair drivers.  The addressing is very 

critical.  It should only be done by an experienced Corsair developer that is familiar with the Modbus 

protocol.  Incorrectly entered addresses could result in the Local computer pushing wrong values to the 

Host. 

Tags are configured for Push or Pull configuration using the ‘Changeable’ Yes/No option.  If the option is 

set to ‘Yes’ it is a Push tag.  If the option is set to ‘No’ it is a Pull tag. 

Push tags have the following properties: 

 The ‘Changeable’ option is set to Yes. 

 The data is written to the Host. 

 The data is never read from the Host. 

 The address can be a 0x Coil or a 4x Holding Register. 

Pull tags have the following properties; 

 The ‘Changeable’ option is set to No. 

 The data is read from the Host. 

 The data is never written to the Host. 

 The address can be a 0x Coil, a 1x Input, a 3x Input Register, or a 4x Holding Register. 

Corsair does register combination as much as it can for both pushes and pulls.  This will certainly result 

in disaster if the developer is not careful.  Corsair will write data in the ‘cracks’ between addresses if it is 

allowed to combine tags for a push.  If an integer push tag is at register 400010 and another is at register 

400089 then Corsair will do a Modbus write of the entire range from 400010 through 400089.  If the 

Host is a PLC this could present serious problems. 

The preferred procedure is to locate all push tags on consecutive Modbus addresses and to locate all 

pull tags on consecutive addresses in a different range. 

When the Host device is a computer running the Corsair program it must be set up for MBHR Host 

operation.  The Modbus Starting address on the Local computer must be entered as the MHBR address 

of the corresponding tag in the Host computer. 

The MBPUSH driver is capable of higher speeds with less network traffic than most other ‘push’ 

protocols. 



222 | P a g e  
 

MBRTU – Modbus RTU Serial 
Xx 

 

MBTIMING – Modbus Serial Timing 
Xx 

 

NetScan – Network Scanning 
Xx 

ODB2 – Simplified Vehicle Interface 
Every vehicle sold in the US after 2008 has a CANbus ODB2 connector near the steering wheel.  This is 

the connector that is used for equipment that reads vehicle diagnostic codes.  Corsair has the ability to 

read a very limited amount of information from this connector.  This driver uses the same CANdaptor 

product as it uses for the Ewert CAN driver.  It hooks to the Corsair computer using a USB connection.  It 

hooks to the vehicle using a readily available cable that has to be purchased separately. 

It must be noted that this driver only reads information that is supposed to be available on all brands of 

vehicle.  A short list of data items is available. These items are differentiated by reserved tag addresses. 

 

 

 

 

 

 

PCCC CLX – Allen-Bradley DF1 over CIP 
This driver is used to talk to Allen-Bradley PLCs using the PCCC protocol over Ethernet.  The addresses 

are DF1 style addresses like ‘N7:0’ and ‘F8:4’. 

The first step for using this driver is to set up a CIP path.  The developer picks the Edit/Paths/Driver 

Paths option from the main menu.  A path is created and given the type ‘CIP’.  The Segments Zoom leads 

to a window for entering CIP segments.  Each segment consists of a Port Identifier and a Link Address.  

For most systems only 1 segment is needed.  The Port Identifier is the slot number of the Ethernet Card.   

Frequently it is one. The Link Address is the slot number of the CPU,  The CPU is typically in slot zero. 



223 | P a g e  
 

A driver of the proper type must be created.  A data source is created under it.  The IP address of the 

PLC Ethernet card goes on the Data Source.  The Data Source record has a field that is used to link to the 

driver path record. 

 

PCCC SLC – Allen-Bradley DF1 over CIP 
Xx 

 

Pelco Video Switching 
The CorsairHMI program can be hooked to a Pelco video switcher.  An operator’s station at a prison can 

have a video monitor next to the Corsair computer screen.  As the operator selects doors on the 

touchscreen the Pelco equipment can switch the monitor to views from the camera closest to each 

door. 

Driver Capabilities  

As of this writing the driver can be used to switch what camera is displayed on a monitor.  It can be used 

to start a sequence in the forward direction, start a sequence in the reverse direction, or hold a 

sequence.  It can be used to match the switcher’s date and time clock settings to the Corsair computer.  

With some systems it may be used to set a Camera Title. 

The driver currently does not have functions to control camera pan, tilt, zoom, focus, or iris. 

Comms Port Configuration 

The connection between the Corsair computer and the switcher is typically RS-232.  The Corsair driver 

that controls the equipment uses Pelco’s ASCII protocol.    The ASCII protocol uses 1 start bit, 8 data bits, 

odd parity, and 1 stop bit.  The baud rate is usually 9600. 

 

Driver Configuration 



224 | P a g e  
 

The Corsair program needs to have the development level set to ‘Admin’ so that development work can 

start.  A driver record must be created.  It gets the ‘PELCO – Pelco Video Switching’ type.  The port 

number on the driver must be set to the desired serial port.  Most commonly it is one.  The ID can be 

any desired name. 

 

The next step is to zoom on the drivers Data Source (‘PLC’) zoom field to enter one or more data source 

records. 

 

Each data source corresponds to a monitor.  Anything can be entered for the ID name.  The Node 

number of the data source corresponds to the Pelco monitor number.  The Real flag must be set to ‘Yes’. 

Pressing F6 on each data source record opens data source single-record editing.  The ‘Res Addr’ button 

is used to create tags on the data source with addresses that will work for the driver. 



225 | P a g e  
 

 

Corsair has a Data Source Register Monitor window that is designed for use with this driver. 

 

Camera switching is accomplished by entering a monitor number and camera number into the edit 

controls and then clicking on the ‘Switch’ button.  A sequence is controlled by entering the monitor and 

sequence number and then using the ‘Forward’, ‘Back’, and ‘Hold’ buttons.  A camera title is entered by 

entering the camera number and label and then clicking on ‘Set’.  The ‘Set Clock’ button is used to match 

the switcher’s time to the Corsair computer. 

The ‘Cameras’ button is used to access the Cameras database. 



226 | P a g e  
 

 

This database can optionally be used to enter numbers and names of cameras. 

Each of the tags created by the Corsair program has a different function with the Pelco driver. 

 

Camera Code is an arrayed tag with a size of 2.  A single-element write of a camera number to index 0 of 

this tag causes the switcher to place that camera on the monitor that has been entered as the data 

source node number.  This tag is commonly used as a Hook Code tag.  A Corsair script can be used with a 

data move block to put values into both elements of the Camera Code tag.  In that case, the zero (first) 

index is the camera number and the one (second) index is the monitor number.  In this way any camera 

can be directed to any monitor.  The Seq Forward and Backward tags work the same way where the first 

element is the sequence number and the optional second element is the monitor number.  Writing any 

value to the Seq Hold tag stops any sequence on the data source’s monitor.  If both elements of the Seq 

Hold tag are written the second element is the monitor number. 

Turning on the Clock Set tag triggers a download of the time from the Corsair computer to the Pelco 

switcher. 



227 | P a g e  
 

 

 

PLC5Enet – Allen-Bradley PLC-5 Ethernet 
Xx 

Honeywell Pro-Watch 
The Corsair interface can be connected to a computer running the Honeywell Pro-Watch access control 

system.  Corsair can lock and unlock doors and monitor alarms from Pro-Watch.  Developing a system 

with this driver requires the user to have some knowledge of the Telnet feature of the Corsair’s TCP 

Expert.  He must also be able to use the JSON Expert.  This is necessary because Corsair talks to Pro-

Watch using the HTTP API.  Pro-Watch doors and alarms have ID strings that are very long and difficult 

to enter.  The work is simplified by having Corsair’s Experts read in the data from the Pro-Watch 

database and save it in a file on the Corsair computer.  This means that the access control system 

database must be completely developed before the Corsair database can be finished.    The developer 

must set up Corsair to do the data read and then save the results in a JSON tree file.  Corsair then uses 

that file to access the Pro-Watch program. 

The first step with a Pro-Watch system is for the Pro-Watch developer to complete the Pro-Watch 

configuration database.  This includes all doors and alarms.  He must then configure the Pro-Watch API 

service.  Typically, he will use TCP port 8734 for the REST access and port 8735 for the SignalR system.    

Corsair can use other port numbers if these defaults are not possible.  The Pro-Watch computer must be 

installed on a network that is accessible from the Corsair computer.  In this example Pro-Watch has a 

fixed IP address of 192.168.1.12.  The Corsair computer has a fixed IP address of 192.168.1.20.  Both 

have a subnet of 255.255.255.0 so they can communicate with each other. 

The Pro-Watch developer will have to configure a User and a Password for Corsair to use.  For this 

example they are “User1” and “Password1”.  He will also need to determine the workstation name of 

the Pro-Watch server.  For this example it is “DESKTOP-PWATCH”. 

The first step for the Corsair developer is to create a driver record. 

 

The driver gets a name and the Pro-Watch driver type.  The IP address of the server goes into the PLC IP 

address field of the driver record. 

Zooming on the ID field opens the special data setup for this driver. 



228 | P a g e  
 

 

The port numbers can be left at zero if the default values are used.  If the Get Alarms Read Interval is set 

too short Corsair can place excessive communications demand upon the Pro-Watch server.  The interval 

should be set longer in systems with multiple Corsair computers. 

Pro-Watch logical devices can be addressed in Corsair by using either their ‘Description’ or 

‘AltDescription’ names.  This selection can be made separately for Doors or for Tags. 

The Diagnostic mode can be turned on for initial experimentation.  It enables some extra capability in 

the driver’s Register Monitor window.  Because it causes extra work for the Corsair computer it is 

recommended to turn it off after the system is started up, especially with a large installation. 

The User Name, Password, and Server Name entries must be correct to match the Pro-Watch 

configuration. 

The next step is to close the Special Setup window, arrow to the ‘Sources’ field.  Zoom to create a data 

source on the driver.  Create a data source. 

 

The resulting source gets an ID name.  The ‘Real’ field is set to ‘Yes’.  It does not get an IP address.  

Zooming on the ‘ID’ field opens the special data setup for the source. 



229 | P a g e  
 

 

The first entry is a complete file specification for the JSON tree data file that Corsair will use for the Pro-

Watch Logical Device configuration information.  The contents of this file will be generated later using 

Corsair’s JSON expert.  This will be done by reading the information from the Pro-Watch server through 

the API. 

The next items are Pro-Watch Event Code numbers.  The first 8 (A-H) are used to determine the secure 

status of doors.  Corsair looks for alarm events on the logical device for the door.  If there is an active 

alarm on any of the nonzero event codes the door is considered to be unsecure and open.  In this case 

either a 900 or a 903 event will make the door show as unsecure. 

The next group of 8 (I-P) event code numbers are used to determine tag status.  If any of the nonzero 

codes have an active alarm the tag gets a value of one.  If none of them have an active alarm the tag 

gets a value of zero. 

The Corsair developer should now save his work and proceed to the TCP Expert. 



230 | P a g e  
 

 

The ‘IP List’ button on the left can assist in entering the 192.168.1.12 address into the edit control in the 

center.  At this point the developer can use the upper-left ‘Ping Scan’ button to verify that the Corsair 

computer can ping the Pro-Watch server.  A failure to ping may indicate network equipment or 

Windows firewall problems. 

The ‘Telnet’ button is now used to access Corsair’s Telnet window. 

 

The window starts out with the default Telnet port value.  The developer must change it to the 8734 

that Pro-Watch uses.  OK will open the Telnet window. 



231 | P a g e  
 

 

The ‘Online’ menu option should cause the window title to change to ‘Connected’.  ‘Offline’ will then 

return it to the disconnected state.  If the ping scan was successful but Corsair fails to connect here the 

port numbers may not match or the Pro-Watch API is not properly started.  Another possibility is firewall 

problems. 

If the connection is successful the developer must now get the Logical Device data from the Pro-Watch 

server.  This is done with the ‘GET /logdevs’ REST method.  The developer could go online and type in 

the HTTP request manually but that would be way too complex.  A better method is to construct the 

request using a Telnet Set.  The Set can be saved in a Telnet configuration file if desired for use at 

another time. 

The ‘Edit’’Sets’ menu option opens the list of 5 available sets. 

 

The ‘Set 1’ button opens the window for editing that set. 



232 | P a g e  
 

 

‘Get Logical Devices’ is a good name since that is what the set does.  Now the components of the set 

need to be configured.  The first button is for the Verb. 

 

The verb should be ‘GET’.  Scheme and server are set to ‘None’.  Now go to the first ‘URL Parts’ button. 

 



233 | P a g e  
 

The two required parts are ‘pwapi’ and ‘logdevs’.  Next is the ‘Standard Headers’ button. 

 

Host Header must be checked.  The user name and password go in under Basic Authorization.  Next go 

to the first ‘Headers’ button. 

 

This satisfies the Workstation Name requirement of the REST API.  Now go to ‘Content’. 

 



234 | P a g e  
 

Set the type to be JSON and verify the rest.  Click on OK to close this window.  Close windows until you 

get back to the Telnet window. 

 

At this point it is a good idea to use the ‘Edit’’Save Configuration’ menu option to save your telnet setup.   

The configuration of your Set is part of this file so you won’t have to enter it again. 

If you are working with a small system it may be possible to fetch the logical device data from this 

window.  Start with a cleared window.  Click on ‘Online’.  Then ‘Sets’’Trigger 1’.  The content of your Set 

is shown in red.  Pro-Watches reply is shown in back.   The best reply begins with ‘HTTP/1.1 200 OK’.  

200 is the reply success status code.  Failed replies will be short.  They will have different status codes 

and some explanation of the problem.  It may be necessary to modify the set and try again.   It is 

recommended to go Offline, Clear the window, and then back Online for each try. 

A successful reply will be quite long.  Most systems with over 5 logical devices will not yield good data 

with this window because the reply is too long to fit in the buffer that is displayed on the screen.  If you 

get a success reply pick the ‘Edit’’JSON Expert’ menu option.  It opens the JSON Expert window. 

 

If the reply could fit in the available space there will be a data tree on the left side of the window.  If it is 

blank or if it does not appear to be complete pick the ‘Left’’Get Data’ menu option. 



235 | P a g e  
 

 

This JSON Data GET will load the reply from the Set directly into the JSON tree control.  It can accept a 

very large amount of data. 

Once the Logical Devices tree data appears on the left side of the JSON expert it’s best to use the 

‘Left’’Save Tree’ option to save the data. 

The next step is to prune unnecessary data out of the tree.  Pruning will save memory and disk space but 

more importantly it will speed Corsair’s searches of the data and make for easier monitoring in the 

drivers Register Monitor window. 

The Logical Devices tree consists of an array of objects.  Each object has several values in it.  Corsair is 

only capable of using 3 of these values. The first is the ‘LogDevID’ string.  This is the long difficult-to-type 

label that Corsair needs to interpret the messages it gets from Pro-Watch.  The other fields are the 

‘Description’ and ‘AltDescription’ strings.  The special setup data for the driver determines which of 

these strings Corsair doors and tags will use.  It’s usually best to leave both of them in the file.  The rest 

of the values in the objects can be pruned if desired.  The pruning is accomplished with the special 

Delete options that are described for the JSON Expert in the Experts manual. 

After the data is pruned the data should be saved in the location where the Corsair driver expects to find 

it.  In our case it is ‘c:\corsair\json_tree.jst’. 

 

S4100 – Simplex 4100 
Xx 



236 | P a g e  
 

 

Serial Stream – Receiving data from a port 
Background 

Many industries routinely allow viewing of real-time control system data from home by operators and 

supervisors. This is typically done over the Internet. Installations like power plants may become 

vulnerable to cyber-attacks by hackers through these Internet connections. The concern is that the plant 

could be shut down or worse. 

Software firewalls have been shown to be an inadequate answer as any software that is designed to let 

certain people through it can eventually be defeated. Firewalls must constantly be updated with 

patches. Many times the need for the patch was discovered because someone has already broken 

through the firewall. 

One idea that has been suggested is that the plant would install a complete set of redundant 

instrumentation. One temperature sensor would be used to operate the process. A second temperature 

sensor would be used at the same location to go to a monitor-only computer system that would be 

viewable through the Internet. The first disadvantage of this approach is the cost of the extra 

instrumentation. The second disadvantage is that the at-home operator needs to see the information 

from the sensor that the control system is actually using, not another sensor that may not agree with it. 

An Answer 

CorsairHMI has several methods to operators to view data. The serial stream driver is designed to allow 

remote viewing of process data in situations where security cannot be compromised. One host 

CorsairHMI Serial Stream ‘transmit’ computer at the manufacturing location sends a stream of data 

down a serial communication line. One or more other CorsairHMI Serial Stream ‘receive’ computers 

receive the data and place it on graphic display screens. Both transmit and receive computers can log 

data. 

The key to the security of this driver is that the transmit CorsairHMI computer only transmits data, it 

never receives. The receive line on the serial port of this computer can be left unhooked so there is no 

question that the data can only go in one direction. No handshake lines are used. The receive computer 

can only see the data. It can never change or effect the configuration of the host in any way. This 

effectively provides an impenetrable ‘firewall’ that does not rely on software or passwords for its 

security. 

The receive CorsairHMI computer can be an MBHR host to share data on the Internet with up to 100 

MBHR remotes. It should use a firewall. A hacker may be able to disturb the serial stream receive 

computer but never the serial stream transmit computer. 

Configuration 

The serial stream driver requires a multiple-computer license for the CorsairHMI program. 



237 | P a g e  
 

Both transmit and receive computers run a similar application database with different settings in the 

computer properties file and driver configuration. At-home MBHR remotes can use copies of the same 

database. 

The serial stream can go from the transmit unit to the receive unit over up to 4 serial ports. More ports 

offer a faster connection. 

The serial ports that are used for the system can be on external USB-to-serial converters if desired. It is 

highly recommended to use external optical isolation on the data line between the transmit and the 

receive computers. This guards against electrical disturbances on one computer effecting the other. A 

short run of fiber-optic cable can serve for this isolation. This would require RS-232 to fiber converter 

boxes. Ethernet fiber connections are not acceptable. 

Operation 

When the transmit CorsairHMI starts interface operation it begins streaming characters out of the serial 

port as fast as it can beginning with the first tag on the first plc and going on to the last tag on the last 

plc. It then repeats the action as long as the interface is running. 

Further Security Considerations 

Any equipment that is on the same network as the CorsairHMI transmit computer cannot use any 

wireless technology. Venders should certify that their equipment does not contain any wireless 

capability. Disabled wireless components are not the answer – they should not even be present in the 

equipment. 

Care should be taken when transferring an updated CorsairHMI application from the transmit computer 

to the receive computer using devices such as USB flash drives. 

 

Siemens S7 – S7 PLC over Ethernet 
Xx 

 

SQL – Database Access 
Xx 



238 | P a g e  
 

 

String Match – ASCII Input 
The String Match driver is a receive-only driver that works with ASCII data streams that arrive over a 

serial port.  The data is unsolicited which means that the Corsair program does not transmit anything to 

the remote device to start a conversation.  The serial stream is separated into ‘lines’ which are 

terminated by one or two termination characters.  This is typical of devices that output to a serial 

printer.  Many fire alarm panels work this way. 

The String Match driver looks through the lines for patterns of characters that match characters that it 

has in a table.  If it sees a proper combination of characters it loads a value into a result data array. 

The String Match driver does not search through a stream of data to find a string.  It looks for strings at 

predefined positions in the data. 

A special feature is a reset tag that can be used for force a selected value into the result data array. 

Driver Setup Parameters 

The String Match driver has some special data setup parameters at the driver level. 

The first driver setup parameter is the number of lines per data packet.  It can vary from 1 to 10. 

The next two setup parameters are the two line termination characters.  They are frequently an ASCII 

carriage return (13) followed by a line feed (10).  If the second termination character is not needed it 

must be set to zero.  If both are set to zero the driver assumes a single carriage return as the terminator. 

The next setup parameter is a Yes/No option to force everything to Upper-Case (capital) letters on 

receive.  This parameter does not capitalize the match strings in the auxiliary databases.  The developer 

must make sure that the case entered for these strings is correct. 

The next four setup parameters are up to 4 characters that can be stripped out of the incoming ASCII 

stream.  They are set to zero if they are not used. 

The driver will always strip out 0 (NULL) characters.  This action is not adjustable. 

It is recommended that the first termination character be set to a carriage return(13) and that line feeds 

(10) be stripped out.  That way the driver will work correctly if the incoming stream has either a single 

carriage return or a carriage return-line feed combination in either order. 

There is a Yes/No parameter that is set to yes for the driver to skip blank lines.  If it is set to No blank 

lines may appear in the line list. 

Data Source Setup Parameters 

The String Match driver has some special data setup parameters at the Data Source level. 



239 | P a g e  
 

The first option is the integer value that is used for a reset. 

The next parameter is a reset time delay. 

The next parameter is a Yes/No parameter to allow more than one match to occur when a line is 

received.  If it is set to No the matching engine  

Reserved Tag Addresses 

The ‘Reset’ tag is a switch that can be manipulated by Corsair scripts as desired.  It is initialized at ‘Off’ 

when the interface is started. 

The ‘Value Array’ tag is an array of unsigned integers that is controlled by the incoming serial stream.  It 

is initialized at all zeros when the interface is started. 

Action Match 1 Line  Action Match 1 Position  Action Match 1 String 

Action Match 2 Line  Action Match 2 Position  Action Match 2 String 

Action Match 3 Line  Action Match 3 Position  Action Match 3 String 

Action Match Name 

Action Match Value 

Action Match All 

Index Match 1 Line  Index Match 1 Position  Index Match 1 String 

Index Match 2 Line  Index Match 2 Position  Index Match 2 String 

Index Match 3 Line  Index Match 3 Position  Index Match 3 String 

Index Match Name  

Index Match Value 

The Match Line tags are integer tags that hold line numbers.  The Match Line value can be from 1 to 10.  

If the Match Line value is zero that match is not used. 

The Match Position tags are integer tags that hold character position numbers.  The first character 

position on a line is position 1 (not zero).  Valid values are from 1 to 250.  If the Match Position value is 

zero that match is not used. 

The Match String tags are string tags that hold the strings that the Matching Engine looks for on the 

Match Line at the Match Position.  Up to 3 strings can be used to qualify a match. 

The Match Name tags are string tags that are used to enter description of auxiliary database records.  

The Matching Engine does not use these tags. 



240 | P a g e  
 

The Action Match Value is the value that will be copied into the ‘Value Array’ when there is a match.  

The Index Match Value is the index into the Value Array where the Value is put.  

The Action Match All tag is a switch that is normally left in the Off position. 

Auxiliary Databases 

The driver supports 2 auxiliary databases.  The first one describes the action matches, the second 

describes the index matches. 

The Action Match auxiliary database is used to enter data into the following tags: 

Action Match 1 Line  Action Match 1 Position  Action Match 1 String 

Action Match 2 Line  Action Match 2 Position  Action Match 2 String 

Action Match 3 Line  Action Match 3 Position  Action Match 3 String 

Action Match Name 

Action Match Value 

Action Match All 

The Index Match auxiliary database is used to enter data into the following tags: 

Index Match 1 Line  Index Match 1 Position  Index Match 1 String 

Index Match 2 Line  Index Match 2 Position  Index Match 2 String 

Index Match 3 Line  Index Match 3 Position  Index Match 3 String 

Index Match Name  

Index Match Value 

Driver Logic 

Incoming serial data is divided into distinct lines as determined by the one or two line termination 

characters.  The driver keeps a list of 10 received lines of up to 250 characters each.  When it gets a new 

line it shifts the old lines down the list and adds the new line at the top of the list.  The termination 

characters do not appear in the list.  The line is then case-corrected to capital letters and characters are 

stripped out as specified by the driver setup parameters.  The list is initialized with empty zero-length  

strings. 

The lines in the list are then submitted to the Matching Engine part of the driver software.  As each new 

line comes in it goes into the list and the Matching Engine gets another chance to look for matches. 



241 | P a g e  
 

For example, assume that another computer is sending the string ‘AAA’ followed by a carriage return, 

then the string ‘BBB’, then the string ‘CCC’ and so on.  

When the first string is received the Matching Engine works on: 

‘AAA’  Empty  Empty  Empty 

When the next string is received the Matching Engine works on: 

‘BBB’  ‘AAA’  Empty  Empty 

As strings come in the Matching Engine sees the following sets of lines: 

‘CCC’  ‘BBB’  ‘AAA’  Empty 

‘DDD’  ‘CCC’  ‘BBB’  ‘AAA’ 

‘EEE’  ‘DDD’  ‘CCC’  ‘BBB’ 

Note that each line is always moved down one position when a new line comes in.  The list of lines is not 

emptied out when a match is found. 

Matching Engine Logic 

The driver has two sets of match data – an Action set and an Index set.  The Action set is used to 

determine what the driver does with the Value Array.  The Index set is used to determine which element 

of the Value Array the driver works with.  Each set can match up to 3 strings. 

Let’s assume a fire alarm with 5 smoke detectors.    The fire alarm panel  sends out two possible status 

strings, ‘Alarm’ and ‘Clear’ for each detector.  The Value Array is to be set to 1 on an alarm and to 0 on 

clear.  There are two records in the Action Match database.  The first is the string ‘Alarm’ with the 

proper Action Match Line and Action Match Position.  The Action Match Value is set to 1.  The second 

record is the string ‘Clear’ with the proper Action Match Line and Action Match Position.  The Action 

Match Value is set to 0. 

The Index Match database has 5 records.  Each has a Match String or Strings for the smoke detectors.  

One Index Match 1 String may be ‘Building A’ with an Index Match 2 String of ‘Smoke 027’.  The Index 

Match Values would range from 1 to 5.  These correspond to the index in the Value Array for each 

smoke.  The Value Array must have a size of at least 6 to allow indexes from 0 to 5.  The Action Match All 

switch is left in the Off position for each record. 

The Matching Engine will search through the entire Action and Index match databases to make as many 

matches as it can when a new line is received.  It is possible for a single line of characters to control 

several changes in different elements of the Value Array. 

Action Match All Operation 



242 | P a g e  
 

Normally the Matching Engine must find from 1 to 3 match strings in the Action Match database. It then 

looks for from 1 to 3 match strings in the Index Match database to find out what element of the Value 

Array is to be changed.  The Action Match All switch offers a different type of operation when it is 

turned on.  In that case the Action Match Value is applied to all elements of the Value Array.  The Index 

Match database is not used for Action Matches whose All switch is turned On.  A message containing the 

string ‘Panel Reset’ could be used to fill the entire Value Array with zeros. 

Reset Action 

The Reset switch is used to force all of the elements of the Value Array to a fixed value.  The value is a 

special setup parameter for the Data Source. 

TBD – define the operation of the timing parameters 

Using Multiple Data Sources 

Each data source on the String Match driver can have a full set of tags.  The auxiliary database data on 

one data source is not used to match data for another data source.  One data source could be used for 

alarm conditions on smoke detectors.  Another could be used for trouble conditions on the same smoke 

detectors. 

Monitoring the Driver 

The communications trace window can be used to examine the incoming data stream.  It shows the 

complete set of incoming characters including terminators before any capitalization or stripping of 

characters occurs.  The Data Source register monitoring window shows the contents of the last 10 

received lines after this processing has occurred. 

 

 

 

 

Telecor T3 – T3-SC Intercom 
Xx 

 

VICON – Vicon Video Switching 
The VICON driver is used to operate a Vicon video switcher from the Corsair interface.  It come with any 

license for the Corsair program.  A corrections license is not required.  The documentation for the Vicon 

driver is contained in the CorsairHMI Corrections manual. 



243 | P a g e  
 

Placement Tasks 
The development manual describes different types of placement actions.  Actions correspond to what 

the computer does when the operator clicks on the placement.  One of the actions is ‘Task’ where the 

computer performs a task.  The Target Task window is used to specify the type of task. 

 

The top selector is used to specify the type of the task.  The value, script, and tag controls are defined by 

what task is selected.  The flowing list tells of the available placement tasks with a description of each. 

Add Value 
Xxxx 

 

Alarm List 
xxxxxx 

 

Block Monitor 
xxxxxx 

 

Block Setup 
xxxxxx 

 



244 | P a g e  
 

Change Operator Levels 
xxxxxx 

 

Change Password 
xxxxxx 

 

Change PIN 
xxxxxx 

 

Clean Screen 
xxxxxx 

 

Close Window 
xxxxxx 

 

Code Entry Pad 
xxxxxx 

 

Create Note 
xxxxxx 

 

CSV File 
xxxxxx 

 

CSV File Directory 
xxxxxx 

 

Decrement 
Xxxxx 



245 | P a g e  
 

 

Do Global Report 
xxxxxx 

 

Do Local Report 
xxxxxx 

 

Email Contact List 
xxxxxx 

 

Increment 
xxxxxx 

 

Global Report Window 
xxxxxx 

 

Local Report Window 
xxxxxx 

 

Log Events 
xxxxxx 

 

Log Off 
xxxxxx 

 

Log On 
xxxxxx 

 



246 | P a g e  
 

Model Selector 
xxxxxx 

 

Monitor Registers 
xxxxxx 

 

Name Finder 
xxxxxx 

 

Open File 
xxxxxx 

 

Print Screen - Default Printer 
xxxxxx 

 

Print Screen – Select Printer 
xxxxxx 

 

Quick Log Off 
xxxxxx 

 

Save .CAP File 
xxxxxx 

 

Scan Network 
xxxxxx 

 

Screen History View 
xxxxxx 



247 | P a g e  
 

 

See List of Users 
xxxxxx 

 

Set Data Source Clocks 
xxxxxx 

 

Set Hook Codes 
xxxxxx 

 

Set Value 
xxxxxx 

 

Start Program 
xxxxxx 

 

Stop Program 
xxxxxx 

 

Subtract Value 
xxxxxx 

 

Text File 
xxxxxx 

 

Text File Directory 
xxxxxx 

 



248 | P a g e  
 

Toggle 
xxxxxx 

 

Turn Off 
xxxxxx 

 

Turn On 
xxxxxx 

 

View Aux Database 
xxxxxx 

 

View CIP Devices 
xxxxxx 

 

View Events 
xxxxxx 

 

View History 
xxxxxx 

 

View Global Report Events 
xxxxxx 

 

View Local Report Events 
xxxxxx 

 

xxxxxxx 



249 | P a g e  
 

 

 

 

Block Reference 
A program block is a section of the CorsairHMI program that may be used by the developer to perform a 

specific function.  Standard blocks are blocks that come with the program.  Some of them are very 

general in their purpose so they can be used in a wide variety of applications.  Some of they are very 

specialized and more complex.  A properly applied block can solve problems that would be very difficult 

to do with a conventional interface. 

Blocks can be solved with 5 different actions – ‘Off’, ‘Startup’, ‘Init’, ‘Forward’, and ‘Reverse’.  Most 

commonly the Forward action is used.  Unless noted otherwise, the description of the block is describing 

the Forward action.  Block results are never communicated to live tags with the Off or Startup actions.  

Most blocks do not have all 5 actions.  Few blocks have the Reverse action. 

If a block is assigned directly to a tag, alarm, or call the actions are executed as follows: 

 When the interface is off the Off action is executed repeatedly. 

 During the block startup delay period the Startup action is executed repeatedly. 

 After the startup delay period the Init action is executed exactly one time. 

 After Init the Forward action is executed repeatedly. 

 After Init the Reverse action is executed as needed. 

If a block is assigned to a script step the actions are executed as follows: 

 When the interface is off the Off action is executed repeatedly. 

 During the script startup delay period the Startup action is executed repeatedly. 

 Whenever the script is started the Init action is executed exactly one time. 

 Whenever the script step is reached the Forward action is executed. 

 The Reverse action is not executed. 

The script Off and Startup actions are executed whether or not the script has auto-start enabled and 

whether or not it is enabled for the computer’s base session.  If a script runs at 2-second intervals all of 

its blocks will execute the Init action every two seconds.  If a script repeatedly jumps back to an earlier 

step it does not restart and the Init action is not repeated. 



250 | P a g e  
 

Standard Blocks 
 

 

Absolute Value 

This block is used to find the absolute value of each of the elements in an array and put it in a result 

array.  The action is repeated for a total of PJ elements. 

Result: Absolute Value Result (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Input Value Array (Size PJ + PD)  Double Float  -12.5 

PD  Input Value Start Index  Double Int  U6.0 

PE       

PF       

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>=1)  Double Int  U6.0 
 

 

Assume that PD=2, PI=5, and PJ=3. 

 PC[2] = -6   PC[3] = 12   PC[4] = -2 

When enabled the block will do the following: 

Result[5] = 6   Result[6] = 12   Result[7] = 2 

 

 

Adapter Status 

The Adapter Status block is used by the Corsair program to monitor the status of a network adapter. 

The interface to the block is through one Result parameter and 10 parameters that are labeled PA 

through PJ. 

Result: Status Value 

Parameter  Label  Type   Format 



251 | P a g e  
 

PA  Enable  Indicator   

PB  Friendly Name  String   
 

Result  Adapter Status 

PA  Block Enable 

PB  Adapter Friendly Name 

PC-PJ  Not used 

The Adapter Status result is an integer value. 

The PA block enable input is a switch.  If it is off the block is not active.  If it comes on the block reads the 

status of the adapter and place the value in the result parameter. 

The PB task name is a string that holds the friendly name of the adapter.  This name can be determined 

using the Computer Network Adapter Summary of the Corsair TCP Expert. 

 

Addition 

This block is used to add elements in the PC array to elements in the PF array and put the sum in the 

result array.  The action is repeated for a total of PJ elements. 

Result: Sum Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Addend Array (Size PJ + PD)  

Double 
Float  -12.5 

PD  First Addend Start Index  Double Int  U6.0 

PE       

PF  Second Addend Start Array (Size PJ + PG)  

Double 
Float  -12.5 

PG  Second Addend Start Index  Double Int  U6.0 

PH       

PI  Sum Array Start Index  Double Int  U6.0 

PJ  Count (>=1)  Double Int  U6.0 
 

Assume PD=2, PG=3, PI=4, and PJ=3 

 PC[2]= 2.3   PC[3]= -4.6   PC[4]= 23.2 



252 | P a g e  
 

 PF[3]= 1.5   PF[4]= 2.7   PF[5]= 12.8 

When enabled the block will do the following:  

Result[4]=3.8 Result[5]=-1.9 Result[6]=36.0 

Alarm 1 to 4 

This block is used to load single data bits into the status and latch bits of Alarm or Call data structures.  

The Result parameter should be a 4-bit Alarm or 4-bit Call data type.  The Latching switch determines 

how it controls the Status and Latch bits of the Result data. 

Result: Destination 4-bit Data (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Input Bit Array (Size PJ + PD)  Switch   

PD  Input Bits Start Index  Double Int  U6.0 

PE  Invert Input  Switch   

PF  Latching Action  Switch   

PG  Persistent  Switch   

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Alarm Tag Active 

This block is used to turn on a Boolean tag when the CorsairHMI model has at least one 

unacknowledged alarm or call within five indexes of an alarm or call tag. The optional PH parameter is 

for a Boolean memory tag that is turned on if at least one alarm is preset whether it is acknowledged or 

not.  

Result: At least one is not acknowledged 

 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Alarm or Call Tag  1-bit Alarm Data   

PD       

PE       

PF       



253 | P a g e  
 

PG       

PH  At least one is Active  Indicator   

PI  Result Array Start Index  Double Int  U6.0 

PJ       
 

Array Distributor 

This block copies values from the PF code value array into elements of the result array.  This distribution 

is controlled by codes in the PC array. 

Result: Values Distributed According to Code (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Code Array (Size PJ + PD)  Integer  U5.0 

PD  Code Start Index  Double Int  U6.0 

PE       

PF  Code Value Array (Size PJ + PG)  Double Float  -12.5 

PG  Code Value Start Index  Double Int  U6.0 

PH       

PI  Distribute Result Array Start Index  Double Int  U6.0 

PJ  Result Array Size  Double Int  U6.0 
 

Assume PD=3, PG=4, PI=5, and PJ=4 

PC[3]= 3 PC[4]= 0 PC[5]=1   PC[6]= 1 

PF[4]= 12.3   PF[5]= 14.6   PF[6]= 2.8   PF[7]= 9.3  PF[8]= 14.6 

When enabled, the block will do the following: 

 Result[5]= 9.3   Result[6] = 12.3 Result[7]= 14.6 Result[8]= 14.6 

Pseudo-Code: 

 For (Loop=0; Loop<PJ; Loop++} 

  Result[PI + Loop] = PF[PF + PC[PD + Loop]] 

 

Array Element Selector 

This block is used to switch values from two input arrays into a third array.  It does each element 

separately.  If the PB input switch is Off the block copies a value from the PD Off array to the result 



254 | P a g e  
 

array.  If the PB input switch is On the block copies a value from the PF On array to the result array.  The 

action is done a total of PJ times. 

Result: Result of the selection (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Selector Switches Array  Switch   

PC  Selector Switches Start Index  Double Int  U6.0 

PD  Off Selection Array (Size PJ + PE)  String   

PE  Off Array Start Index  Double Int  U6.0 

PF  On Selection Array (Size PJ + PG)  String   

PG  On Array Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PC=2, PE=3, PI= 5, and PJ=4 

 PB[2]=Off PB[3]=On PB[4]=Off PB[5]=On 

 PD[3]=2.3 PD[4]=3.7 PD[5]=12.2 PD[6]=8.2 

PF[4]=1.5 PF[5]=5.9 PF[6]=6.3 PF[7]=16.4 

When Enabled the block will act as follows: 

 Result[5]=2.3 Result[6]=5.9 Result[7]=12.2 Result[8]=16.4 

Pseudo Code: 

FOR (Loop=0; Loop<PJ; Loop++)     { 

 IF(PB[PC +Loop] > 0.5 THEN 

  Result[PJ + Loop] = PJ{PG + Loop] 

   ELSE 

  Result[PJ + Loop] = PD[PE + Loop] 

}  

Array Expansion 

This block is used to copy each of PJ elements of a source array into PF elements of a destination array. 

Result: Expanded Array (Size PF * PJ + PI) 



255 | P a g e  
 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Value Array (Size PJ + PD)  String   

PD  Value Array Start Index  Double Int  U6.0 

PE       

PF  Number of expanded values per input (>= 1)  Double Int  U6.0 

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  How many input values to expand (>= 1)  Double Int  U6.0 
 

Assume PD=7, PF=4, PI=2, and PJ=5 

 PC[7]=8  PC[8]=5  PC[9]=7  PC[10]=9 PC[11]=2 

When enabled the block will do the following 

 Result[2]=8 Result[3]=8 Result[4]=8 Result[5]=8  

 Result[6]=5 Result[7]=5 Result[8]=5 Result[9]=5 

 Result[10]=7 Result[11]=7 Result[12]=7 Result[13]=7  

 Result[14]=9 Result[15]=9 Result[16]=9 Result[17]=9 

 Result[18]=2 Result[19]=2 Result[20]=2 Result[21]=2 

 

Array Fill 

This block is used to fill PJ values in the result array with the single source value that is at PC[PD]. 

Result: Result Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Source Value (Size PD + 1)  String   

PD  Souce Index (only 1 element is used)  Double Int  U6.0 

PE       

PF       

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 



256 | P a g e  
 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PD=3, PI=2, PJ=6, and PC[3]=12 

 PC[0]=9  PC[1]=10 PC[2]=11 PC[3]=12 PC[4]=13 

When enabled the block will do the following: 

 Result[2]=12 Result[3]=12 Result[4]=12 

 Result[5]=12 Result[6]=12 Result[7]=12 

Pseudo Code: 

For (Loop=0; Loop<PJ; Loop++) 

 Result [PI + Loop] = PC[PD] 

Array Maximum 

This block is used to find the maximum of the elements in an array. 

Result: Maximum (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Value Array  String   

PD  Value Array Start Index  Double Int  U6.0 

PE       

PF  Count how many elements are at maximum  Double Int  U6.0 

PG  Index to First Maximum Element  Double Int  U6.0 

PH       

PI  Result Index  Double Int  U6.0 

PJ  Value Array Element Count  Double Int  U6.0 
 

 

Array Minimum 

This block is used to find the minimum of the elements in an array 

Result: Minimum (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       



257 | P a g e  
 

PC  Value Array  String   

PD  Value Array Start Index  Double Int  U6.0 

PE       

PF  Count how many elements are at minimum  Double Int  U6.0 

PG  Index to First Minimum Element  Double Int  U6.0 

PH       

PI  Result Index  Double Int  U6.0 

PJ  Value Array Element Count  Double Int  U6.0 
 

Array Totalization 

This block is used to totalize values in an array and store the results in another array. The values to be 

added together are in PC. This parameter is a series of PJ sub-arrays each having a length of PF. Each of 

these sub-arrays is individually totalized and the sum is placed in an element of the result. PJ elements 

of the result are loaded with these total values. Most simple totalizations will set PD to 0, and PJ to 1. 

Result: Array of Totals (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Value Array (Size PF * PJ + PD)  Double Float  -12.5 

PD  Value Array Start Index  Double Int  U6.0 

PE       

PF  Number of Values per Total (>= 1)  Double Int  U6.0 

PG       

PH       

PI  Total Array Start Index  Double Int  U6.0 

PJ  Count of Totals (>= 1)  Double Int  U6.0 
 

Assume that Pd=3, PF=3, PI=5, and PJ=4. This means that PC contains 4 sub-arrays, each of which is 3 

elements long. PC must contain at least 15 elements. Values are as follows: 

 PC[3]=5  PC[6]=13 PC[9]=6  PC[12]=15 

 PC[4]=12 PC[7]=4  PC[10]=11 PC[13]=10 

 PC[5]=9  PC[8]=12 PC[11]=14 PC[14]=8 

When enabled the block will totalize each 3-element group into an element of the result array. The 

action is repeated a total of 4 time to yield: 

 Result[5]=26 Result[6]=29 Result[7]=31 Result[8]=33 

Pseudo Code: 



258 | P a g e  
 

 For (M=0; M<PJ; M++)   { 

  Total=0.0; 

  For (N=0; N<PF; N++) 

   Total = Total + PC[M * PF +N +PD] 

  Result[PJ + M] = Total; 

}  

 

Aux DB Strings 

This block is used to load string from an auxiliary database 

Result: Strings (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Input Value Array   Double Int  U6.0 

PC  Input Value Start Index  Double Int  U6.0 

PD  Input Value Count  Double Int  U6.0 

PE  Code Number Tag  Double Int  U6.0 

PF  Field 0-3  Double Int  U6.0 

PG  On for ?? If not found  Switch   

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Result Array size (>= 1)  Double Int  U6.0 
 

 

BattState 

This block contains proprietary logic for use with battery monitoring systems. It only works on 

CorsairHMI systems, adhere to BMS logic option if selected. 

Result: Indications (Size 3-16) 

Parameter  Label  Type   Format 

PA  Current  Double Float  -12.5 

PB  Voltage  Double Float  -12.5 

PC  Current Setpoints (Size 4)  Double Float  -12.5 

PD  Voltage Setpoints (Size 4)  Double Float  -12.5 

PE  Time Setpoints (Size 8)  Double Int  Msec 



259 | P a g e  
 

PF  Option Switches (Size 2)  Switch   

PG  Timers (Size 7)  Double Int  Msec 

PH       

PI       

PJ       
 

 

Bit Index Collector 

This block is used to search through an array of bits to see which ones of them are on. The indexes of 

the On bits are packed into the integer result array. The rest of the result array is set to zero. PH is used 

to return the number of elements of the result array that are in use.  PG is used to set a block of 

indicators corresponding to the elements of the result array with index values. 

Result: Bit Index Table (Size PJ + PI)  

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Bit Array (Size PE + PD)  Indicator   

PD  Bit Array Start Index  Double Int  U6.0 

PE  Bit Array Size  Double Int  U6.0 

PF       

PG  Result Table Indicators Array (Size PJ)  Indicator   

PH  Result Table Element Count  Double Int  U6.0 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Size of Result Array   Double Int  U6.0 
 

 

Bit Split 

This block is used to split a group of bits into separate values 

Result:  Separated Bit Data 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC       

PD       

PE       

PF       

PG       



260 | P a g e  
 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ       
 

Bitwise AND 

This block is used to AND each of the bits in a PC value with the bits of the PF value and place that value 

into the result. The action is repeated for a total or PJ elements. 

Result:  ANDed Output Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Value Array (Size PJ + PD)  Indicator   

PD  First Value Start Index  Double Int  U6.0 

PE       

PF  Second Value Array (Size PJ + PG)  Indicator   

PG  Second Value Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume that PD=2, PG=3, PI=4, and PJ=3 

 PC[2] =  4 (0100) PC[3]= 10 (1010) PC[4]=5  (0101) 

 PF[3] =  5 (0101) PF[4] = 7  (0111) PF[5]= 11 (1011) 

When enabled the block would do the following: 

 Result[4]=4 (0100) Result[5]=2 (0010) Result[6]=1 (0001) 

(Values are shown in decimal and binary)  

 

Bitwise NOT 

This block is used to invert the bits of a value in the PC array and place that value into the result. The 

action is repeated for a total of PJ elements. 

Result: Inverted Output Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   



261 | P a g e  
 

PB       

PC  Value Array (Size PJ + PD)  Indicator   

PD  Value Start Index  Double Int  U6.0 

PE       

PF       

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume that PD=2, PI=4, and PJ=2 

 PC[2]=4 (0100)  PC[3]=10 (1010) 

When enabled the block would do the following: 

 Result[4]=1111111111111011 Result[5]=1111111111110101 

(Results are shown in binary) 

 

Bitwise OR 

This block is used to Or each of the bits in a PC value with the bits of the PF value and place that value 

into the result. The action is repeated for a total of PJ elements. 

Result: ORed Output Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Value Array (Size PJ + PD)  Indicator   

PD  First Value Start Index  Double Int  U6.0 

PE       

PF  Second Value Array (Size PJ + PG)  Indicator   

PG  Second Value Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int   U6.0 

PJ  Count (>= 1)  Double Int   U6.0 
 

 

Assume that PD=2, PG=3, PI=4, and PJ=3 



262 | P a g e  
 

 PC[2]=4 (0100)    PC[3]=10 (1010)  PC[4]=5 (0101) 

 PF[3]=5 (0101)    PF[4]= 7 (0111)   PF[5]=9 (1001) 

When enabled the block would do the following: 

 Result[4]=5 (0101) Result[5]=15 (1111) Result[6]=13 (1101) 

(Values are shown in decimal and binary) 

 

Bitwise XOR 

This block is used to Exclusive Or each of the bits in a PC value with the bits of the PF value and place 

that value into the result. The action is repeated for a total of PJ elements. 

Result:  XORed Output Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Value Array (Size PJ + PD)  Indicator   

PD  First Value Start Index  Double Int   U6.0 

PE       

PF  Second Value Array (Size PJ + PG)  Indicator    

PG  Second Value Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume that PD=2, PG=3, PI=4, PJ=3 

 PC[2]=4 (0100)    PC[3]=10 (1010)   PC[4]=5 (0101) 

 PF[3]=5 (0101)    PF[4]=7 (0111)   PF[5]=9 (1001) 

When enabled the block would do the following: 

 Result[4] = 1 (0001) Result[5]=13 (1101) Result[6]=12 (1100) 

(Values are shown in decimal and binary) 

Bound to Limits 

This block is used to bind a value between two limits. If the PB input value is under the PE minimum, PE 

is transferred to the result. If it is over the PF maximum, PF is transferred to the result. If it is between 



263 | P a g e  
 

PE and PF then PB is transferred unchanged to the result. The action is repeated for a total of PJ 

elements. PB and the result may be set to the same place if PC and PI are set to be equal.  

The PE minimum and PF maximum may be single values that are used with each element of the input 

array. In this case PG is set to one. PE and PF may also be arrays of values allowing different min and 

max values for each element. In that case PG should be set to be equal to PJ. 

Result: Limited Result (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Value Input Array (Size PJ + PC)  Double Float  -12.5 

PC  Input Start Index  Double Int  U6.0 

PD       

PE  Minimum Limit (Size PG)  Double Float  -12.5 

PF  Maximum Limit (Size PG)  Double Float  -12.5 

PG  Limits Count (1 or PG)  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Assume PC=2, PG=3, PI=5, and PJ=3 

 PB[2]=13.2 PB[3]=-4.0 PB[4]=97.0 

 PE[0]=12.6 PE[1]= -2.0 PE[2]=1.0 

 PF[0]=13.8 PF[1]=3.0 PF[2]=4.2 

When enabled the block will do the following: 

 Result[5]=13.2 Result[6]=-2.0 Result[7]=4.2 

Assume PC=2, PG=1, PI=5, and PJ=3 

 PB[2]=0  PB[3]=6  PB[4]=5 

 PE[0]=3 

 PF[0]=5 

When enabled the block will do the following: 

Result[5]=3 Result[6]=5 Result[7]=4  



264 | P a g e  
 

 

Comms Status 

This block is used to determine if a data source is online and communicating with the CorsairHMI 

computer. It only works with data sources that are using Corsiar devices. 

Result: Good Comms Indication (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Source Tag  Indicator   

PC  Online Delay Time  Double Int  Msec 

PD  Offline Delay Time  Double Int  Msec 

PE  Online Indication (Size PF + 1)  Indicator   

PF  Online Indication Index  Double Int   U6.0 

PG  Offline Indcation (Size PH + 1)  Indicator   

PH  Offline Indication Index  Double Int  U6.0 

PI  Result Array Start Index  Double Int  U6.0 

PJ       
 

Control Limits 

This block is used to calculate SPC control limits 

Result: Standard Diviation 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Sample Data (Size PC + PJ)  Double Float  -12.5 

PC  Sample data Start Index  Double Int  U6.0 

PD       

PE       

PF  Lower Control Limit     

PG  Center Line     

PH  Upper Control Limit     

PI  Result Array Start Index  Double Int  U6.0 

PJ  Sample Count (>=3)  Double Int  U6.0 
 

Count Bits 

This block is used to count how many bits of an array are turned on. It does not do anything when the 

PA enable parameter is off the array of bits to be counted by parameter PB. The count starts at integer 

PC and continues for a total of PS bits. The total number of bits will vary from zero to the value in PJ. It is 

stated in PI index of the result. PG is an optional output parameter. If used it must be a script variable in 

a memory tag. It retains the index of the first ON bit 



265 | P a g e  
 

Result: Count of how many bits are ON (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Bit Array (Size PC + PJ)  Indicator   

PC  Bit Array Start Index  Double Int   U6.0 

PD       

PE       

PF       

PG  Index of first ON bit  Double Int  U6.0 

PH       

PI  Result Start Index   Double Int  U6.0 

PJ  How Many Bits to Examine  Double Int  U6.0 
 

Counter 

This block counts changes in the on-off status of an array of Boolean bit values. Each bit has a separate 

count value in a result envoy. 

 Maximum count speed is system dependent. Most systems should be able to handle up to five counts 

per second with equal on and off times. Faster count rates should use extended hardware. 

 This block does not do anything to limit or reset the resulting count value. Those functions must be 

paired in other logic. The monitor value of a count depends on the tag and format of the result. Counts 

going over the maximum are undefined. 

Result: Counts (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Input Bit Array (Size PJ + PD)  Indicator   

PD  Input Array Start Index  Double Int  U6.0 

PE       

PF  Count on Rise (Size 1)  Indicator   

PG  Count on Fall (Size 1)  Indicator   

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1, <= 400)  Double Int  U6.0 
 

Daily Average 

This block is used to average daily values; it also rejects values under the minimum. 

Result:  Average (Size PI + 4) 



266 | P a g e  
 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Value List (Size PC + PD)  Double Float  -12.5 

PC  Value Start Index  Double Int  U6.0 

PD  Value Array Size  Double Int  U6.0 

PE       

PF  Minimum Value  Double Float  -12.5 

PG       

PH  Returned Count  Double Int  U6.0 

PI  Result Start Index  Double Int  U6.0 

PJ       
 

Result[0 + PI] is the average 

Result[1 + PI] is the total 

Result[2 + PI] is the lowest 

Result[3 + PI] is the highest 

 

Daily Production 

This block rolls-over daily production totals 

Result: Table of daily values (Size PF * PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Time Setpoints (Size PC)  Integer  AM/PM 

PC  Time Setpoint Size (1-160)  Double Int  U6.0 

PD  Transfer Data Indicator  Indicator   

PE       

PF  Number of Values Per Day (>= 1)  Double Int  U6.0 

PG  Use PH Time?  Indicator   

PH  Special Time  Integer  AM/PM 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count of Days (>= 1)  Double Int  U6.0 
 

 

Debounce 

This block debounces timing 



267 | P a g e  
 

Result:  Debounced Status (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Input Array (Size PJ + PD)  Indicator   

PD  INPut Array Start Index  Double Int  U6.0 

PE       

PF  On Time Delay (Size 1)  Double Int  Msec 

PG  Off Time Delay (Size 1)  Double Int  Msec 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (1-200)  Double Int  U6.0 
 

 

Descending Transfer 

This decreases index order is a reaunerate when shifts data force in an array. Assume a tag needs 

‘values’ with a size 10. It may be reduced to copy element 0 to element 1, element 1 to 2 and so on. If 

this is done with a normal transfer or the entire array will be filled with the entity of element 0. The 

descending transfer block copies the elements in the correct order. 

Result:  Destination Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Input Value Array (Size PJ + PD)  String   

PD  Input Value Start Index  Double Int  U6.0 

PE       

PF       

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Division 

This block is used to divide elements in the PC array by elements in the PF array and put the quotient in 

the results array. The action is repeated for a total of PJ elements. 

Result:  Quotient Array (Size PJ + PI) 



268 | P a g e  
 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Dividend Array (Size PJ + PD)  Double Float  -12.5 

PD  Dividend Start Index  Double Int  U6.0 

PE       

PF  Divisor Array (Size PJ + PG)  Double Float  -12.5 

PG  Divisor Start Index  Double Int  U6.0 

PH       

PI  Quotient Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PD=2, PG=3, PI=4, and PJ=3 

 PC[2]=9  PC[3]=-4 PC[4]=6 

 PF[3]=3  PF[4]=2  PF[5]=0.5 

When enabled the block will do the following: 

 Result[4]=3 Result[5]=-2 Result[6]=12 

 

Equal To 

This block is used to control a result array of indicators based upon comparison of elements in two 

arrays. If the elements in the PC array is equal to the element in the PF array the result is turned On. 

Otherwise it is turned off. This action is done a total of PJ times. This block is not recommended for use 

with floating-point values. The Within Limits block may be a better choice for these situations. 

Result:  Indicator Output Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Value Array (Size PJ + PD)  String   

PD  First Value Start Index  Double Int   U6.0 

PE       

PF  Second Value Array (Size PJ + PG)  String   

PG  Second Value Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 



269 | P a g e  
 

Assume that PD=2, PG=3, PI=4, and PJ=3 

 PC[2]=4  PC[3]=27 PC[4]=5 

 PF[3]=5  PF[4]=27 PF[5]=9 

When enabled the block would do the following: 

 Result[4]=Off Result[5]=On Result[6]=Off 

 

Falling Trigger 

This block is used for falling edge detection of the state of an indicator. When the PA input value goes 

from 1 to 0 the result indicator is set to one until the next execution of the block. 

Result: Falling edge detected flag (Size PI + PJ) 

Parameter  Label  Type   Format 

PA  Input Bit (Size PB + PJ)  Indicator   

PB  Input Index  Double Int  U6.0 

PC       

PD       

PE       

PF       

PG       

PH       

PI  Result Index  Double Int  U6.0 

PJ  Count (>= 1, <=800)  Double Int  U6.0 
 

Scans of the block would work like this: 

Scan 1  PA[PB]=Off Result[PI]=Off 
Scan 2  PA[PB]=On Result{PI]=Off 
Scan 3  PA[PB]=Off Result[PI]=On 
Scan 4  PA[PB]=Off Result[PI]=Off 
Scan 5  PA[PB]=On Result[PI]=Off 
Scan 6  PA[PB]=On Result[PI]=Off 
Scan 7  PA[PB]=Off Result[PI]=On 
Scan 8  PA[PB]=Off Result[PI]=Off 
 
 

Fix Strings 

This block is used to modify an array of strings with several options. The options are executed in 

parameter order from PC through PH. PC and PD are used to force the letters in the string to be all 



270 | P a g e  
 

upper or lower case. If both PC and PD are on the result they will be in the lower. PE is turned on to 

remove leading and trailing spaces and control characters from the string. PF is similar except that they 

can be removed from anywhere, not just at the beginning and end. PG is turned on for adding spaces to 

the end to force the string to its full allocated length. If PH is On all characters except numbers, decimal 

places, and the minus sign are removed. In order for strings to be fixed in-place PB must be set to the 

same place as the result and PI must be set to zero. 

Result:  Destination String Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Input String Array (Size PJ)  String   

PC  Force Upper Case  Indicator   

PD  Force Lower Case  Indicator   

PE  Strip Lead and Trail Space  Indicator   

PF  Strip all Space  Indicator   

PG  Space Pad to Length  Indicator   

PH  Strip Non-Numeric  Indicator   

PI  Result Index  Double Int  U6.0 

PJ  Count  Double Int  U6.0 
 

 

GPS Areas 

This block takes location information from a GPS receiver. It has a table of corners of rectangular areas. 

It returns an index value telling what area the receiver is currently in. The block also translates the 

current position to an XY pair of graphic screen pixel coordinates. This is an array operation that can do 

multiple screens. PB, PC, PD, PE, PH, and PI must be fed with 64 bit integer data with the exact format 

for this block to work. It will not do type of format translation on these parameters. 

Result:  Current Area Index (Size 1, Value Range 0 to Areas) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Current Latitude  64-bit Integer  Latitude 

PC  Current Longitude  64-bit Integer  Longitude 

PD  Area Latitude Table (Size Areas * 4)  64-bit Integer  Latitude 

PE  Area Longitude Table (Size Areas * 4)  64-bit Integer  Longitude 

PF  Area name Strings (Size Areas + 1)  String   

PG       

PH  Screen Latitude Table (Size Screen * 2)  64-bit Integer  Latitude 

PI  Screen Longitude Table (Size Screen * 2)  64-bit Integer  Longitude 

PJ  Returned Pixel Position (Size Screen * 2)  Double Int  -8 



271 | P a g e  
 

 

 

GPS Destinations 

This block takes location information from a GPS receiver. It has a table of positions of markers. It 

returns an index value telling what marker is next. 

The block also translates the current position to an XY pair of graphic screen pixel coordinates. This is an 

array operation that can do multiple screens. 

PB, PC, PD, PE, PH, and PI must be fed with 64 Bit integer data with exact format for this block to work. It 

will not do type of format translation on these parameters. 

Result: Current Marker Index (Size 1, Value Range 0 to Destination) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Current Latitude  64-bit Integer  Latitude 

PC  Current Longitude  64-bit Integer  Longitude 

PD  Destination Latitude Table (Size Markers)  64-bit Integer  Latitude 

PE  Destination Longitude Table (Size Markers)  64-bit Integer  Longitude 

PF  Destination Name String (Size Markers + 1)  String   

PG  Distance to Destination (Meters)  Double Float  U8.1 

PH       

PI       

PJ       
 

GPS Markers 

The GPS Markers Block is a standard Corsair program block that is used with Latitude and Longitude 

information from a GPS receiver.  It has some similar characteristics to the GPS Areas block except that it 

works with ‘Markers’.  A Marker is a named point on the surface of the earth with a defined Latitude and 

Longitude.  The block is fed a table of markers.  It determines which marker is closest to the current 

position of the GPS. 

The blocks result parameter is called the Current Marker Index.  If there are no valid markers in the table 

the Index is set to zero.  If the first marker is the closest the index is set to 1.  If the second marker is 

closest the index is set to 2. 

The block has 10 parameters labeled PA through PJ.  PA is the block’s enable control.  If it is off the block 

does not do anything.  Usually PA is set to a constant value of ‘On’. 

PB and PC are the current latitude and longitude tags from the GPS data source.  They should be the 64-

bit integer type with the special Latitude and Longitude data formats. 



272 | P a g e  
 

PD and PE are for the tags that make up the marker latitude and longitude tables. They are typed and 

formatted like PB and PC.   If a system is sized for up to 100 makers these tags must have a size of at 

least 100.  Corsair array elements begin with index values of zero so these elements would be indexed 

from 0 to 99. 

The length of the marker table is determined by the size of the PC and PD tags.  If an element of these 

tables has a value of 0 for both latitude and longitude the GPS Markers block will skip over that element. 

When the block is enabled, if element 6 of the PD and PE table is the closest to the PB and PC GPS 

position the block result parameter will be set to a value of 7. 

The PF parameter is used for a string tag that has the names of the marker positions.  These names are 

indexed to align with the current marker index.  Note that the marker name in PF[12] corresponds to the 

marker position in PD[11] and PE[11].  If the developer desires to show the current marker name on a 

screen he can create a value placement of the PF tag indexed by the current marker index result tag. 

The PG parameter is used to enter a second tag that is controlled by the block.  It must be a memory tag. 

It is set to the distance in meters from the current position to the closest marker. 

The primary purpose of the GPS markers block is to find the closest marker to the current GPS position.  

A second purpose of the block is to translate the GPS coordinates to screen X and Y pixel coordinates.  

This feature is used to move icons around the screen as the GPS position changes.  Parameters PH, PI, 

and PJ are used for this function.  The GPS Areas block performs this function exactly the same way as 

the GPS Markers block does using the same parameters.  The operation of this function is described in a 

separate document. 

The GPS Markers block has a specialized setup window that can be used by the developer to configure 

and monitor the parameter data.  The window that is used to assign parameters to the block has a 

button marked ‘Setup’ on the lower left.  It is used to open the GPS Marker setup window. 

The top group of controls on the setup window is related to the current latitude and longitude 

coordinates that are coming from the GPS.  The developer can temporarily make the tags changeable so 

that he can enter coordinates for testing purposes.  The window has buttons that are used to open 

these entries.  The number of the current closest marker, its name, and the distance to it in meters are 

all displayed. 

The next group of controls on the marker setup window is used to view and change the marker setup 

data.  The operator enters a nonzero marker number.  Its latitude, longitude, and name are displayed.  

Buttons allow entry of each item. 

The ‘Set’ button is used to copy the current GPS coordinates into a marker.  The developer can drive a 

vehicle containing the GPS to a marker position.  He enters the marker number, hits the ‘Set’ key, and 

clicks on ‘Marker Name’ to name the marker.  Internet-based mapping software may be another 

possibility to get marker coordinate information. 



273 | P a g e  
 

There are controls on the marker setup window in a group labeled ‘Screens’.  These controls are used to 

configure the GPS coordinate to screen pixel position function.  They are not covered in this document. 

The ‘Solves’ number in the screens control group is used to tune the performance of the markers block.  

This number is how many markers are checked with each execution of the block.  If the number is zero 

all markers are checked.  If it is set to 50 the block will check 50 markers on each execution.  Low values 

may make it so that the computer takes too long to find the closest marker as the GPS moves.  A zero or 

high value may cause the GPS Markers block to take excessive CPU time. 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Current Latitude  64-bit Integer  Latitude 

PC  Current Longitude  64-bit Integer  Longitude 

PD  Marker Latitude Table (Size Markers)  64-bit Integer  Latitude 

PE  Marker Longitude Table (Size Markers)  64-bit Integer  Longitude 

PF  Marker Name String (Size Markers + 1)  String   

PG  Distance to Marker (Meters)  Double Float  U8.1 

PH  Screen Latitude Table (Size Screens * 2)  64-bit Integer  Latitude 

PI  Screen Longitude Table (Size Screens * 2)  64-bit Integer  Longitude 

PJ  Returned Pixel Positions (Size Screens * 2)  Double Int  -8 
 

 

Greater Than 

This block is used to control a result array of indicators based upon comparison of elements in two 

arrays. If the element in the PC array is greater than the element in the PF array the result is turned On. 

Otherwise it is turned off. This action is done a total of PJ times. 

Result: Indicator Output Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Value Array (Size PJ + PD)  String   

PD  First Value Start Index  Double Int  U6.0 

PE       

PF  Second Value Array (Size PJ + PG)  String   

PG  Second Value Start Index   Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume that PD=2, PG=3, PI=4, and PJ=3 



274 | P a g e  
 

 PC[2]=4  PC[3]=27 PC[4]=9 

 PF[3]=5  PF[4]=27 PF[5]=5 

When enabled the block will do the following: 

 Result[4]=Off Result[5]=Off Result[6]=On 

 

Greater Than or Equal To 

This block is used to control a result array of indicators based upon comparison of elements in two 

arrays. If the element in the PC array is greater than or equal to the element in the PF array the result is 

turned On. Otherwise it is turned off. This action is done a total of PJ times. 

Result: Indicator Output Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Value Array (Size PJ + PD)  String   

PD  First Value Start Index  Double Int  U6.0 

PE       

PF  Second Value Array (Size PJ + PG)  String   

PG  Second Value Array Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume that PD=2, PG=3, PI=4, and PJ=3 

 PC[2]=4  PC[3]=27 PC[4]=9 

 PF[3]=5  PF[4]=27 PC[5]=5 

When enabled the block would do the following: 

 Result[4]=Off Result[5]=On Result[6]=On 

 

Group Calls 

This block is used to set or clear indicators based upon which groups of calls contain activity. The PC 

array is an array of calls. It is frequently fed from a tag on an intercom driver. The PE array is a list of 

non-zero indexes into the result array. PF and PG contain the start and end indexes of the calls in each 

group. 



275 | P a g e  
 

Result: Array of Group Indications 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Call Indications   Indicator   

PD       

PE  Result Group List  Double Int  U7.0 

PF  First Call of Group   Double Int  U7.0 

PG  Last Call of Group  Double Int  U7.0 

PH       

PI       

PJ       
 

 

High Alarm 

This block is used to set indicators in an array when values in the PB array are greater than values in the 

PE setpoint array. The indicators are reset to zero when the PB value drops below the PE value minus 

the PG deadband. The reulst array element is not changed if the PB value is less than or equal to PE and 

greater than or equal to PE minus PG. The action is repeated a total of PJ times. 

Result: Alarm Status (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Process Value Array (Size PJ + PC)  Double Float  -12.5 

PC  Process Value Start Index  Double Int  U6.0 

PD  Any in Alarm  Indicator   

PE  High Setpoint (Size PF)  Double Float  -12.5 

PF  Setpoint Count (1 or PJ)  Double Int  U6.0 

PG  Deadband (Size PH)  Double Float  -12.5 

PH  DeadBand Count (1 or PJ)  Double Int  U6.0 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Coutn (>= 1)  Double Int  U6.0 
 

The PD indicator comes on if any of the values are in alarm. 

The PE set point and PG deadband may be single values that are used with each element of the PB array. 

In this case PF and PH are set to 1. PE and PG can also be arrays of values allowing different set points 

and deadbands for each element. In that case PF and PH should be set equal to PJ 

 



276 | P a g e  
 

HOA Call 

This block does the HOA control of a tag. 

Result: Call Bits (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  HOA Array (Size PJ + PD)  HOA   

PD  HOA Array Start Index  Double Int  U6.0 

PE       

PF  Auto Signals (Size PJ + PG)  Switch   

PG  Auto Signals Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

HOA Position 

This block is used to control boolean bit tags based upon the data in a HOA tag. It can operate on 

multiple indexes on the HOA tag.  

The HOA is a data structure with three bits called Status, Enable, and Hand. The block turns the result on 

if the status bit is on. Optional output PE through PH output additional information about the Hand tag. 

PE is turned on if the enable bit is on. PF is turned if both the enable and hand bit is on. They can be 

script variables or memory tags. PE is turned on if the Enable bit is on. PF is turned on if both the Enable 

and Hand bit is on. PG is turned on if both the Enable and hand bits are off. PH is turned on if the Enable 

bit is on and the Hand bit is off. 

Result:  Status Bits (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  HOA Array (Size PJ + PC)  HOA   

PC  HOA Array Start Index  Double Int   

PD       

PE  Is Enabled Output (Size PJ)  Switch   

PF  Is hand Output (Size PJ)  Switch   

PG  Is Off Output (Size PJ)  Switch   

PH  Is Auto Output (Size PJ)  Switch   

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 



277 | P a g e  
 

 

HOA Status 

This block is used to control…. The block is designed to use only with ?? HOA tags. 

 It will not ?? when the HOA tag is on a data structure. 

Needs review – JA 

Result:  HOA Switches (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Status Inputs Array (Size PJ + PC)  Switch   

PC  Status Inputs Start Index  Double Int  U.0 

PD  Set to Hand (Size 1)  Switch   

PE  Shut off Hand Bit (Size 1)  Switch   

PF  Set to Auto (Size 1)  Switch   

PG  Set to Off (Size 1)  Switch   

PH       

PI  Result Array start Index  Double Int  U6.0 

PJ  Count (>= 1, <= 400)  Double Int  U6.0 
 

 

Horizontal Tank 

This block is used to calculate the volume of liquid that is in a horizontal cylindrical tank with flat ends. It 

needs to know the tank dimensions and the distance that the liquid is up from the bottom. A multiplier 

is applied to the result for conversion from cubic volume unit to other units. The final result can be in 

units like gallons or pounds. 

Result:  Volume in multiplied cubic units (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Liquid Height  Double Float  -12.5 

PC  Tank Diameter  Double Float  -12.5 

PD  Tank Length  Double Float  -12.5 

PE  Result Multiplier  Double Float  -12.5 

PF       

PG       

PH  Cubic Units  Double Float  -12.5 

PI  Result Index  Double Int  U6.0 

PJ       



278 | P a g e  
 

 

 

Hourly Production 

This block totalizes production data segregated by time. 

Result:  Table of Hourly Value (Size PI + PJ) 

Parameter  Label  Type   Format 

PA  Enable Addition (Size PB + 1)  Indicator   

PB  Enable Index  Double Int  U6.0 

PC  Amount to Add  Double Float  -12.5 

PD  Start time Array (Size PJ)  Integer  AM/PM 

PE  End Time Array (Size PJ)  Integer  AM/PM 

PF       

PG  Use PH Time?  Indicator   

PH  Special Time  Integer  AM/PM 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Ingredient in Use 

The block is used with recipes to mark which ingredients of a list are in use on a formula. PC contains an 

array of integer values ranging from 0 to PJ minus 1. The block first turns off the result array for a total 

of PJ elements. It then zeros out the optional PH array. It then goes to the PD starting index element of 

the PC array. If it has an integer value of 4 the block turns on Result[PI+4] to mark that it found the 

ingredient code value of 4. It will then add one to the value PH[4] (if PH is used). This totalizes how many 

times the ingredient appears the PC list. The result is an On-Off flag marking that it is used somewhere 

in the PC list. The block works through a total of PE elements of the PC array. 

Result:  Array of Indicators (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Ingredient Code Array (Size PE + PD)  Integer  U5.0 

PD  Ingredient Code Start Index  Double Int  U6.0 

PE  Ingredient Code Array Size  Double Int  U6.0 

PF       

PG       

PH  Ingredient Uses Count Result (Size PJ)  Integer  U5.0 

PI  Result Array Start Index  Double Int  U6.0 



279 | P a g e  
 

PJ  Size of Result Array (>= 1)  Double Int  U6.0 
 

Assume PD=2, PE=6, PI=3, and PJ=5 

PC[2]=4  PC[3]=0  PC[4]=4  PC[5]=2  PC[6]=3  PC[7]=3 

When enabled the block will yield the following results: 

PH[0]=1  PH[1]=0  PH[2]=1  PH[3]=2  PH[4]=2 

Results[3]=On Results[4]=Off Results[5]=On Results[6]=On  Results[7]=On  

 

Ingredient Totals 

The block is used with recipes to totalize amounts by ingredient. PC contains the ingredient indexes. It is 

an array of integer values ranging from 0 to PJ minus 1. The block first zeros the result array for a total of 

PJ elements, it then zeros out the optional PH array. It then goes to the PD starting index element of the 

PC array. If it has an integer value of 4 the block grabs the amount value PE[PF]. It then adds that 

amount to Result[PI+4]. It will then add one to the value in PH[4] (if PH is used). This totalizes how many 

times the ingredient appears in the PC array. The result is a total of how much was used. 

Result:  Array of Totals (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Ingredient Code Array (Sizes PG + PD)  Integer  U5.0 

PD  Ingredient Code Start Index  Double Int  U6.0 

PE  Ingredient Amount Array (Size PG + PF)  Double Float  -12.5 

PF  Ingredient Amount Start Index  Double Int  U6.0 

PG  Size of Arrays   Double Int  U6.0 

PH  Ingredient Uses Count Result (Size PJ)  Integer  U5.0 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Number of Ingredients  Double Int  U 6.0 
 

Assume PD=2, PF=3, PG=6, PI=3, and PJ=5 

PC[2]=4  PC[3]=0  PC[4]=4  PC[5]=2  PC[6]=3  PC[7]=3 

PE[3]=2.8 PE[4]=3.6 PE[5]=12.2 PE[6]=8.4 PE[7]=5.5 PE[8]=4.2 

When enabled the block will yield the following results: 

PH[0]=1  PH[1]=0  PH[2]=1  PH[3]=2  PH[4]=2 



280 | P a g e  
 

Result[3]=3.6 Result[4]=0.0  Result[5]=5.8  Result[6]=9.7  Result[7]=15.0 

 

Initialize 

This block is used to fill many values in the result array with a single source value. It only acts on 

initialization. 

Result:   Initialized Result Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA       

PB       

PC  Source Value (Size PD + 1)  String   

PD  Source Index (only 1 element is used)  Double Int  U6.0 

PE       

PF       

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PD=3, PI=2,PJ=6, and PC[3]=12 

On initialization the block will do the following: 

Result[2]=12 Result[3]=12 Result[4]=12 

Result[5]=12 Result[6]=12 Result[7]=12 

This block is not to be used in programs. 

 

Integrate Pulse 

This block integrates the pulse generator 

Result:  Pulses (Size 2) 

Parameter  Label  Type   Format 

PA  Enabled  Indicator   

PB  Freeze  Indicator   

PC  Analog Value  Double Float  -12.5 

PD  Low Threshold  Double Float  -12.5 

PE  Pulse Constant  Double Float  -12.5 



281 | P a g e  
 

PF  Time Base  Double Int  Msec 

PG  Slice Period  Double Int  Msec 

PH       

PI  Current Accumulation  Double Float  -12.5 
 

 

Less Than 

This block is used to control a result array of indicators based upon comparison of elements in two 

arrays. If the element in the PC array is less than the element in the PF array the result is turned on. 

Otherwise it is turned off. This action is done a total of PJ times. 

Result:  Indicator Ouput Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Value Array (Size PJ + PD)  String   

PD  First Value Start Index  Double Int  U6.0 

PE       

PF  Second Value Array (Size PJ + PG)  String   

PG  Second Value Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume that PD=2, PG=3, PI=4 and PJ=3 

 PC[2]=4   PC[3]=27 PC[4]=9 

 PF[3]=5  PF[4]=27 PF[5]=5 

When enabled the block would do the following: 

Result[4]=On Result[5]=Off Result[6]=Off 

 

Less Than or Equal To 

This block is used to control a result array of indicators based upon comparison of elements in two 

arrays. If the element in the PC array is less than or equal to the element in the PF array the result is 

turned on. Otherwise it is turned off. This action is done a total of PJ times. 

Result:  Indicator Output Array (Size PJ + PI) 



282 | P a g e  
 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Value Array (Size PJ + PD)  String   

PD  First Value Start Index  Double Int  U6.0 

PE       

PF  Second Value Array (Size PJ + PG)  String   

PG  Second Value Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume that PD=2, PG=3, and PJ=3 

 PC[2]=4  PC[3]=27 PC[4]=9 

 PF[3]=5  PF[4]=27 PF[5]=5 

When enabled the block would do the following: 

Result[4]=On Result[5]=On Result[6]=Off 

 

Login Data 

This block is used to load tags with data about the currently logged in operator. If it is not enabled, it 

does not do anything. The result is to be a boolean bit tag. 

Result:  Logged – In Indication (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC       

PD       

PE  Authority Level   Double Int  U6.0 

PF       

PG  Operator Name  String   

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ       
 

 



283 | P a g e  
 

Login ID 

This block is used to log in a user from an ID string. 

Result:  Logged – In Indication (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  ID String  String   

PD       

PE  Alternation  Switch   

PF       

PG  Operator Name  String   

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ       
 

 

Login User 

This block is used to log in a user from a string 

Result:  Logged – In Indication (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  User Name String  String   

PD       

PE       

PF       

PG  Operator Name  String   

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ       
 

 

Logout 

This block is used to log out an operator. 

Result:  Logged – In Indication (Size PI + 1) 

Parameter  Label  Type   Format 



284 | P a g e  
 

PA  Enable  Indicator   

PB       

PC       

PD       

PE       

PF       

PG  Operator Name  String   

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ       
 

 

Lookup Table 

This block is used to calculate an array of values using linear interpolation. PB is the array of raw input 

values. PE and PF form a table of pairs of input and output values. The block takes a value from the PB 

array and finds what elements of the PE array are below and above it. It then uses the corresponding 

values in the PF array to interpolate a result. This action is repeated for a total of PJ elements. 

The PE and PF tables can be any desired length with a minimum of 2. Their size is PG. The value of the PE 

input value table must be in ascending (increasing) order for the block to function correctly. Values in 

the PF output value table may be in any order. 

Result:  Interpolated Output Value (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Raw Input Value Array (Size PJ + PC)  Double Float  -12.5 

PC  Raw Value Start Index  Double Int  U6.0 

PD       

PE  Input Value Table (Size PG)  Double Float  -12.5 

PF  Output Value Table (Size PG)  Double Float  -12.5 

PG  Table Size (>= 2)  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Low Alarm 

This block is used to set indicators in an array when values in the PB array are less than values in the PE 

set point array. The indicators are reset to zero when the PB value goes above the PE value plus the PG 



285 | P a g e  
 

dead band. The result array element is not changed if the PB value is greater than or equal to PE and less 

than or equal to PE plus PG. The action is repeated a total of PJ times. 

The PD indicator comes on if any of the values are in alarm. 

The PE set point and PG dead band may be single values that are used with each element of the PB 

array. On this case PF and PH are set to 1. PE and PG can also be arrays of values allowing different set 

points and dead bands for each element. In that case PF and PH should be set equal to PJ. 

Result:  Alarm Status (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Process Value Array (Size PJ + PC)  Double Float  -12.5 

PC  Process Value Start Index  Double Int  U6.0 

PD  Any in Alarm  Indicator   

PE  Low Setpoint (Size PF)  Double Float   -12.5 

PF  Setpoint count (1 or PJ)  Double Int  U6.0 

PG  Deadband (Size PH)  Double Float  -12.5 

PH  Deadband Count (1 or PJ)  Double Int  U6.0 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Maximum 

This block captures the maximum of a changing value. When it is enabled the PC value is checked 

against the result to see if it is greater. If it is, it is copied to the result as the new value of the maximum. 

This operation is repeated on PJ elements of both the PC and result arrays. 

When the block captures anew value of the maximum for the PD starting index it stores the date and 

time in a block variable. It may also store it in the PG parameter. 

When the PF reset input is on the PC array is copied to the result array and the date and time are stored 

in a block variable and optionally in the PH parameter. 

Result:   Maximum Result (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Value Input Array (Size PJ + PD)  Double Float  -12.5 

PD  Value Start Index  Double Int  U6.0 

PE       



286 | P a g e  
 

PF  Reset Input  Indicator   

PG  Date and Time of Start Index Maximum   Double Int  Ostime 

PH  Date and Time of Last Reset  Double Int  Ostime 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Min Max Scaling 

This block is used to convert an array of raw values into an array of results using straight-line 

interpolation between a minimum and a maximum. PD through PG contain the values that define the 

scaling. If the PB raw values is greater than the PE raw maximum the result is set to the PG scaled 

maximum. The action is repeated a total of PJ times. 

 PD through PG can each be a single value that is used for all of the elements that are converted. In this 

case PH is set to 1. They can also be an array of values allowing different scaling for each element. In this 

case PH is set to be equal to PJ. 

Result:  Scaled Result (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Raw Value Array (Size PJ + PC)  Double Float  -12.5 

PC  Raw Value Start Index  Double Int  U6.0 

PD  Raw Minimum (Size PH)  Double Float  -12.5 

PE  Raw Maximum (Size PH)  Double Float  -12.5 

PF  Scaled Minimum (Size PH)  Double Float  -12.5 

PG  Scaled Maximum (Size PH)  Double Float  -12.5 

PH  Min and Max Count (1 or PJ)  Double Int  U6.0 

PI  Result Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Minimum 

This block captures the minimum of a changing value. When it is enabled the PC value is checked against 

the result to see if it is less. If it is, it is copied to the result as the new value of the minimum. This 

operation is repeated on PJ elements of both the PC and result arrays. When the block captures a new 

value of the minimum for the PD starting index it stores the date and time in a block variable. It may also 

store it in the PG parameter. When the PF reset input is on, the PC array is copied to the result array and 

the date and time are stored in a block variable and optionally in the PH parameter. 

Result:  Minimum Result (Size PJ +PI) 

Parameter  Label  Type   Format 

PA  Enable Check for Minimum   Indicator   



287 | P a g e  
 

PB       

PC  Value Input Array (Size PJ + PD)  Double Float  -12.5 

PD  Value Start Index  Double Int  U6.0 

PE       

PF  Rest Input  Indicator   

PG  Date and Time of Start Index Minimum  Double Int  OStime 

PH  Date and Time of last Reset  Double Int  OStime 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Moving Bit 

This block acts like a shift register to control an array of bits. Only one bit is turned on and the rest are 

turned off. The on bit moves forward at the PA timed interval. The PB Run/Reset switch is turned off to 

reset all the bits to zero. The PC Enable/Pause switch is turned off to freeze the timer and let the on bit 

stay where it is. PE determines the size of the bit array. The PD invert switch inverts the values in the 

result array so that only one bit is off and the rest are turned on. If PE is set to 0 or to 1 the block acts as 

a simple blinker, turning the result on and off with the timing specified in PA. This block may be used 

during animation for showing motion. It is also a suggested way to schedule programs so that they are 

not all executing at once.  

When the Moving bit block is used in corsair script the program should execute continuously or at 

regular timed intervals. It should not be used in programs that are only triggered in other ways. 

Result:   Bit Indicator Array (Size PE) 

Parameter  Label  Type   Format 

PA  Seconds (#.###)  Double Int   

PB  On - Run/Off - Pause  Switch   

PC  On - Enable/Off - Pause  Switch   

PD  Invert  Switch   

PE  Bit Array Size  Double Int  U6.0 

PF       

PG       

PH       

PI  Move Pulse  Indicator   

PJ  Current Position  Integer  U5.0 
 

Multiplication 

This block is used to multiply together elements in the PC array and the PF array and then put the 

product in the result array. The action is repeated for a total of PJ elements. 

Result:  Product Array (Size PJ + PI) 



288 | P a g e  
 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Factor Array (Size PJ + PD)  Double Float  -12.5 

PD  First Factor Start Index  Double Int  U6.0 

PE       

PF  Second Factor Array (Size PJ + PG)  Double Float  -12.5 

PG  Second Factor Start Index   Double Int  U6.0 

PH       

PI  Prodcut Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PD=2, PG=3, PI=4, and PJ =3 

 PC[2]=2  PC[3]=-4 PC[4]=12 

 PF[3]=4  PF[4]=5  PF[5]=0.5 

When enabled the block will do the following: 

Result[4]=8 Result[5]=-20  Result[6]=6 

 

MX Plus B 

This block scales an array of PB raw values by using first a multiplication and then an addition. The final 

sum goes into the result array. The action is repeated a total of PJ times. The PD Multiplier and PF adder 

may be single values that are used with each element of the input array. In this case PE and PG are set to 

one. PD and PF may also be arrays of values allowing different M and B values for each element. In that 

case PE and PG should be set to be equal to PJ. 

Result:  Y Result (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  X (Input Array) (Size PJ + PC)  Double Float  -12.5 

PC  Input Start Index  Double Int  U6.0 

PD  M (Multiplier)(Size PE)  Double Float  -12.5 

PE  Mulitplier Count (1 or PJ)  Double Int  U6.0 

PF  B (Adder)(Size PG)  Double Float  -12.5 

PG  Adder Count (1 or PJ)  Double Int  U6.0 

PH       

PI  Result Array Start Index   Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 



289 | P a g e  
 

 

 

Not Equal to 

This block is used to control a result array of indicators based upon comparison of elements in two 

arrays. If the element in the PC array is not equal to the element in the PF array the result is turned on. 

Otherwise it is turned off. This action is done a total of PJ times.  

This block is not recommended for use with floating-point values. The Within Limits block followed by a 

Bitwise NOT of the result may be a better choice for these situations. 

Result:  Indicator Output Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First Value Array (Size PJ + PD)  String   

PD  First Value Start Index  Double Int  U6.0 

PE       

PF  Second Value Array (Size PJ + PG)  String   

PG  Second Value Start Index  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Assume that PD=2, PG=3, PI=4, and PJ=3 

 PC[2]=4  PC[3]=27 PC[4]=5 

 PF[3]=5  PF[4]=27 PF[5]=9 

When enabled the block would do the following: 

Result[4]=On Result[5]=Off  Result[6]=On 

 

Operator Level 

This block is used to load the current operator level. 

Result:  Operator Level 0-2  

 



290 | P a g e  
 

Peak Hold 

This block is used to do hold peaks of a varying input value.  It is commonly used when logging a value at 

a fixed time interval.   The log samples may be taken at 30 second intervals.  The value may occasionally 

hit a overrange peak value for less than 5 seconds.  The operator desires to see these peaks.  Variable-

rate logging based upon changes in the value may not be possible.  The answer is for the data to vary 

normally unless it hits a peak.  The computer needs to ‘hold’ the peak for a time interval long enough to 

guarantee it gets kept in the log.  Typically this is greater than one and less than two times the sample 

interval.  In our case the peaks may be held for 45 seconds.  

Result:  Value with held peaks (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  R  D  Msec 

PC  Input Value (Size PD + 1)  Double Float  -12.5 

PD  Input Value Start Index  Double Int  U6.0 

PE  Positive Peak Threshold  Double Float  -12.5 

PF  Negative Peak Threshold  Double Float  -12.5 

PG  Peak Change Difference  Double Float  -12.5 

PH  Timings  Double Int  Msec 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Status Flags  Switch   
 

The block can hold both positive and negative peaks.  The PC input value must be greater than PE to be 

considered as a positive peak.  The PC input value must be less than PF to be considered as a negative 

peak.  If PE and PF are both set to 0.0 the block will constantly be timing as any value is considered to be 

a peak .  Setting PE to a value higher than the highest possible input shuts off holding positive peaks.  

Setting PF to a value more negative than the lowest possible input shuts off holding negative peaks. 

The PH[0] timing value is how long peaks are held.  If PH is attached to an array with a size greater that 

one then PH[1] is the minimum peak time setpoint. The minimum time is most commonly left at 0 

seconds.  If the minimum time is nonzero the value must be over the peak threshold for the minimum 

time before it is held.  The minimum timing gives the developer a way to filter out noise spikes that do 

not count as true peaks. 

The PG Peak Change Difference value can be used to avoid unnecessarily long holding of a peak. Once 

the timing has started to hold a peak if the input value changes by less than PG a new timing period is 

not started. 

Assume that PE is set at 100.0 and PG is set to 1.0.  PH[0] is set to 30 seconds.  PH[1] is set to 5 seconds.  

The PC input value starts out at 99.0.  The block passes this through to the result unchanged.  If the 

input abruptly jumps to 105.0  this value immediately passes to the result.  If it drops back to 99.0 in less 

than 5 seconds the result tracks with it. 



291 | P a g e  
 

When the input jumps to 105.0 for more than 5 seconds a 30-second peak hold timing is started.  If the 

input drops any amount during this period the result is held.  If the input drops back to 99.0 after 15 

seconds the result will not change to 99.0 until the 30-second timing is complete. 

If the input jumps back to 105.0 for 5 seconds the 30-second timing starts again.  When the input stays 

high at 105.0 for 45 seconds more and then drops to 99.0 the drop at the result is immediate since the 

30-second timing has been satisfied. 

If the input jumps back to 105.0 for 5 seconds the 30-second timing starts again. When the input drops 

to 102.0 after 10 seconds the result continues to held at 105.0 for the remainder of the 30 second 

period.  It then starts a new 30-second timing at the 102.0 level. 

If the input is at 99.0 and then it jumps to 105.0 for 5 seconds a 30-second timing starts.  If  after 10 

seconds the input jumps to 110.0  the result immediately jumps to 110.0.  After 5 seconds at 110.0 a 

new 30-second timing of that peak begins. 

If the input is at 99.0 and then it jumps to 105.0 for 5 seconds a 30-second timing starts.  If after 10 

seconds the input jumps to 105.5 the result immediately jumps to 105.5 but a new 30-second timing is 

not started.  This is because the 0.5 change is less than the PG value. 

Production Shifts 

This block is used to enter parameters for production shifts. The last element of the PC and PD arrays is 

for the end of week time. This result is 28 shift active indications. 

Result:  Shift Indications (Size 28) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Shifts Enables (Size 28)  Double Int  TOD 

PC  Shift Start Times (Size 29)  Integer  Weekday 

PD       

PE       

PF       

PG  Dates (Size 7/week)  Integer  Date 

PH  Times (Size 28/week)  Double Float  -12.5 

PI  Production (Size 28/week)  Double Float  -12.5 

PJ  Shift Lenghts (Size 28)  Double Int  Duration 
 

 

Random Value 

This block is used to load a result array of PJ elements with a string of random numbers.  Each value 

ranges from 0 to a positive 1 before it is multiplied by the PB parameter. The PC parameter is added to it 

before it is stored in the result. 



292 | P a g e  
 

Result:  Random Result (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Multiplier (Size 1)  Double Float  -12.5 

PC  Bias (Size 1)  Double Float  -12.5 

PD       

PE       

PF       

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PB=20.0, PC=-10.0, PI=3, and PJ=4 

When enabled the block will load different random values into 

 Result[3], Result[4], Result[5], and Result[6]. 

These values will range from -10.0 to +10.0 

 

Read Clock 

This block reads the clock from the Corsair computer and stores the value in the correct way for the 

result’s tag type and format. 

PB through PJ should be memory tags. The result parameter is not guaranteed to work with all 

combinations of tag type and format. 

Result:  Format – Dependent Time and Date (Size 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Second 0-59  Integer  U4.0 

PC  Minute 0-59  Integer  U4.0 

PD  Hour 0-23  Integer  U4.0 

PE  Day of Month 1-31  Integer  U4.0 

PF  Month 0-11  Integer  U4.0 

PG  Year  Integer  U4.0 

PH  Day of Week 0-6  Integer  U4.0 

PI  Day of Year 0-365  Integer  U4.0 

PJ  Daylight Saving in effect  Indicator   
 



293 | P a g e  
 

Rising Trigger 

This block is used for rising edge detection of the state of an indicator. When the PA input value goes 

from 0 to 1 the result indicator is set to one until the next execution of the block. 

Result:  Rising Edge Detected Flag (Size PI + PJ) 

Parameter  Label  Type   Format 

PA  Input Bit  Indicator   

PB  Input Index  Double Int  U6.0 

PC       

PD       

PE       

PF       

PG       

PH       

PI  Result Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Scans of the block would work like this: 

Scan 1   PA[PB]=Off Result[PI]=OFF 
Scan 2   PA[PB]=On Result[PI]=On 
Scan 3   PA[PB]=On Result[PI]=OFF 
Scan 4   PA[PB]=Off Result[PI]=OFF 
Scan 5   PA[PB]=On Result[PI]=On 
Scan 6   PA[PB]=On Result[PI]=OFF 
Scan 7   PA[PB]=On Result[PI]=OFF 
Scan 8   PA[PB]=Off Result[PI]=OFF 
 

 

Sample Timer 

This block is used to turn on a single switch for only one program scan a regular timed interval. PA 

contains the timing. When the interface is turned on the block will wait for a PA interval before it sends 

the first pulse. 

The result of a sample timer should only be used in the block environment that has the timer or 

synchronization problems will occur. A tag sample timer result should not be used in a program. A 

sample timer in one program should not be referenced in another program. 

When the sample timer block is used in a Corsair script the program should execute continuously or at 

regularly timed intervals. It should not be used in programs that are only triggered in other ways. 

Result:  Periodic Pulse (Size PI + 1) 



294 | P a g e  
 

Parameter  Label  Type   Format 

PA  Seconds (#.###)  Double Int  Msec 

PB       

PC       

PD       

PE       

PF       

PG       

PH       

PI  Result Index   Double Int  U6.0 

PJ       
 

Save Application File 

This block will save the Corsair Application (.CAP) file to disk whenever it is enabled. 

Result:  Returned Error Code (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC       

PD       

PE       

PF       

PG       

PH  Error Return  Integer  Error 

PI  Result Index  Double Int  U6.0 

PJ       
 

Session Index 

This block will load the index of this session. 

Result:  Console View Session Index (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Comms Session Index  Double Int  U6.0 

PD       

PE  Base Sesson Index  Double Int  U6.0 

PF       

PG       



295 | P a g e  
 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ       
 

 

Session Transfer 

This block will transfer data if on a specific session. 

Result:  Destination Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Input Value Array (Size PJ + PD)  String   

PD  Input Value Start Index  Double Int  U6.0 

PE       

PF  Session Index  Double Int  U6.0 

PG       

PH       

PI  Result Arrayy Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Set Bits 

This block is used to control a result array of PJ indicator bits. The bits are all shut off except for a count 

of PD bits starting at position PC. The first on bit is Result[PI+PC]. 

Result:  Array of Bits (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  First On Bit Postion  Double Int  U6.0 

PD  Coutn of On(Set) Bits (<= PJ)  Double Int  U6.0 

PE       

PF       

PG       

PH       

PI  Result Start Index  Double Int  U6.0 

PJ  Total Bits (>= 1)  Double Int  U6.0 
 



296 | P a g e  
 

Assume PC=2, PD=3, PI=4, and PJ=8 

When enabled the block will do the following: 

Result[4]=Off  Result[5]=Off Result[6]=On Result[7]=On 

Result[8]=Off Result[9]=Off Result[10]=Off Result[11]=Off  

 

Sine Wave 

This block is used to generate a value that changes with time using a sine wave pattern. The timing is 

calculated from when the Corsair program starts interface operation. The raw sine value ranges from -1 

to +1. It is multiplied by PD and then PE is added before it is placed into the result. If the block is 

disabled for a period of time and then re-enabled the result will jump abruptly to the calculated value.  

Result:  Sine Wave Result (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Period in Seconds  Double Int  Duration 

PC  Phase Shift in Seconds  Double Int  Duration 

PD  M Multiplier  Double Float  -12.5 

PE  B Bias  Double Float  -12.5 

PF       

PG       

PH       

PI  Result Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Sliding Average 

Used to average a process value. 

Result:  Average (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Process Value (Size PC + 1)  Double Float  -12.5 

PC  Process Value Index  Double Int  U6.0 

PD       

PE  Sample Seconds (#.###)  Double Int  Msec 

PF  Window Samples (1-100)  Double Int  U6.0 

PG       



297 | P a g e  
 

PH       

PI  Average Result Index   Double Int  U6.0 

PJ       
 

 

SPC Rules 

This block is used to find out-of-control situations using SPC rules. The main result uses Western Electric 

rules. The first index of the result is turned on if any of the six rules are violated. The next 6 indexes are 

turned on if specific rules are violated. The block will handle cases where the PE center line value is not 

equal to the average of the PD and PF control limits. Results are undefined if PD<PE<PF is not true or if 

PJ < 3. 

Result:  Rule Broken Flags (Size PI + 7) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Sample Data (Size PC + PJ)  Double Float  -12.5 

PC  Sample Data Start Index  Double Int  U6.0 

PD  Lower Control Limit  Double Float  -12.5 

PE  Center Line  Double Float  -12.5 

PF  Upper Control Limit  Double Float  -12.5 

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Smpole Count (>= 3)  Double Int  U6.0 
 

 

The Western Electric rules are as follows: 

Rule 1, 2 of 3 consecutive points above 2/3 of the Upper Control Limit 

Rule 2, 2 of 3 consecutive points below 2/3 of the Lower Control Limit 

Rule 3, 4 of 5 consecutive points above 1/3 of the Upper Control Limit 

Rule 4, 4 of 5 consecutive points below 1/3 of the Lower Control Limit 

Rule 5, 8 consecutive points above the Center Line 

Rule 6, 8 consecutive points below the Center Line 

 



298 | P a g e  
 

Square Root 

This block is used to find the square root of each of the elements in an array and put it in a result array. 

This action is repeated for a total of PJ elements. 

Result:   Square Root Result (Size PJ + PI) 

Assume PD=3, PI=5, and PJ=4 

PC[3]=49.0 PC[4]=16.0 PC[5]=64.0 PC[6]=4.0 

When enaqbled the block will do the following: 

Result[5]=7.0 Result[6]=4.0 Result[7]=8.0 Result[8]=2.0 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Input Value Array (Size PJ + PD)  Double Float  -12.5 

PD  Input Value Start Index  Double Int  U6.0 

PE       

PF       

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Step Type Indications 

This block is designed to use with recipes to control a bit based upon the integer typecode of a step The 

step type codes are in PC. PF contains a table of On/Off switches that used to control the result. If PC is 4 

then the on-off status of PF[4] is transferred to the result. If the PC type code is greater than or equal to 

PG the result indicator is shut off. The action is done a total of PJ times. 

Result:  Indicator Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Step Type Code Array (Size PJ + PD)  Interger  U5.0 

PD  Step Typ eCode Start Index  Double Int  U6.0 

PE  Step Type Names  String   

PF  Step Type Code Switch Array (Size PG)  Swtich   

PG  Number of Step Types  Interger  U5.0 



299 | P a g e  
 

PH       

PI  Result Array Start Index   Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PD=2, PG=6, PI=3, and PJ =5 

PC[2]=5  PC[3]=0  PC[4]=4  PC[5]=3  PC[6]=2 

PF[0]=Off PF[1]=On PF[2]=Off PF[3]=On PF[5]=Off 

When enabled the block will yield the following results: 

Result[3]=Off Result[4]=Off Result[5]=On Result[6]=On Result[7]=Off 

 

 

 

 

String Concatenate 

This block is used to concatenate (combine) two or three strings to form a result string. The operation is 

performed on string arrays for a total of PJ elements. 

Result:  Combined String (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Furst Strubg Arrat (Size PJ + PC)  String   

PC  First String Start Index   Double Int  U6.0 

PD  Second String Array (Size PJ + PE)  String   

PE  Second String Start Index  Double Int  U6.0 

PF  Third String Array (Size PJ + PG)  String   

PG       

PH  Result Array Start Index  Double Int  U6.0 

PI  Count (>= 1)  Double Int  U6.0 
 

Assume PC=2, PE=5, PG=8, PI=3, and PJ=4 

PB[2]= ‘A’ PB[3]= ‘D’ PB[4]= ‘HI’ PB[5]= ‘M’ 

PD[5]= ‘B’ PD[6]= ‘EF’ PD[7]= ‘JK’ PD[8]= ‘NO’ 

PF[8]= ‘C’ PF[9]= ‘G’ PF[10]= ‘L’ PF[11]= ‘PQR’ 



300 | P a g e  
 

When enabled the block will do the following: 

Result[3] = ‘ABC’ Result[4]= ‘DEFG’ Result[5] = ‘HIJKL’ Result[6] = ‘MNOPQR’ 

 

String Copy 

This block copies a number of values from one array to another whenever it is enabled. It starts at the 

specified PD and PI indexes and moves a total of PJ values in increasing index order. The block will do 1 

move when PJ has a value of 0. 

This is the same exact action as the Transfer Data block. Operation is different when the PF selector 

String parameter is used. The block converts the PC value to an integer and uses it to select a PF element 

to transfer to the result. If PC is equal to 0, then PF[0] will go to the result. If PC is equal to 1 then PF[1] 

will go to the result. If PC is greater than or equal to PG the PC value will go to the result like a regular 

transfer. 

Result:  Result String Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Surce Array (Size PJ + PD)  String   

PD  Source Start Index  Double Int  U6.0 

PE       

PF  Selector String Array (Size PG)  String   

PG  Selector Size  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PD=2, PG=4, PI=5, and PJ=3 

PC[2]=3  PC[3]=1  PC[4]=2 

PF[0]= ‘Sally’ PF[1]= ‘Roger’ PF[2]= ‘Fred’ PF[3]= ‘Mac’ 

When the block is enabled it will result in: 

Result[5]= ‘Mac’ Result[6]= ‘Roger’ Result[7] = ‘Fred’ 

 



301 | P a g e  
 

String Match 

This block compares strings in the PC input array against strings in the PF match table. When it finds a 

match it stores the index of the match table value in the result array. If it cannot find a match that 

element of the result is set to zero Strings must match exactly including capitalization and length. The Fix 

string block is suggested as a preprocessor to make desired corrections in strings before using this block. 

Result:  Result Indexes (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Input String Array (Size PJ + PD)  String   

PD  Input String Array Start Index  Double Int  U6.0 

PE       

PF  Match Table (Size PG)  String   

PG  Match Table Size  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PD=2, PG=4, PI=6, and PJ=3 

PC[2]= ‘Sally’ PC[3]= ‘Roger’ PC[4]= ‘George’ 

PF[0]= ‘XXXX’     PF[1]= ‘Tom’ PF[2]= ‘Sally’ PF[3]= ‘Roger’ 

When enabled the block will do the following: 

Result[6]=2 Result[7]=3 Result[8]=0 

 

Subtraction 

This block is used to subtract elements in the PF array from elements in the PC array and put the 

difference in the result array. The action is repeated for a total of PJ elements. 

Result:  Difference Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Minuend Array (Size PJ + PD)  Double Float  -12.5 

PD  Minuend Start Index  Double Int  U6.0 

PE       

PF  Subtrahend Array (Size PJ + PG)  Double Float  -12.5 



302 | P a g e  
 

PG  Subtrahend Start Index  Double Int  U6.0 

PH       

PI  Difference Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PD=2, PG=3, PI=4, and PJ=3 

PC[2]=2.3 PC[3]=4.6 PC[4]=23.2 

PF[3]=1.5 PF[4]=2.7 PF[5]=12.8 

When enabled the block will do the following: 

Result[4]=0.8 Result[5]=1.9 Result[6]=10.4 

 

Tank Fill 

This block is used to ramp a result value up and down. It can be used for animation of a storage tank or 

for generating profiles for process setpoints. If PC and PD are both on, PE is added to the result. If PF and 

PG are both on, PH is subtracted from the result. The final result is always held between the PA 

minimum and the PB maximum. 

The sample timer block is a recommended way to generate [pulses for both the PC and PF parameters. 

PD and PG can then be controlled to fill and empty the tank. The block does not do edge detection on PC 

and PF. The rising trigger block may be needed if inputs are used for the pulses. 

Result:  Tank fill level (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Minimum  Double Float  -12.5 

PB  Maximum  Double Float  -12.5 

PC  Fill Pulse  Indicator   

PD  Fill Enable  Switch   

PE  Fill Amount   Double Float  -12.5 

PF  Empty Pulse  Indicator   

PG  Empty Enable  Switch   

PH  Empty Amount  Double Float  -12.5 

PI  Result Index  Double Int  U6.0 

PJ       
 

Pseudo Code: 

Value = Result[PI] 



303 | P a g e  
 

If(PC&&PD) Value = Value + PE 

If(PF&&PG) Value = Value-PH 

If(Value<PA) Value=PA 

If(Value>PB) Value = PB 

Result[PI]=Value 

 

Task Kill 

The Task Kill block is used by the Corsair program to kill (shut down) tasks. 

The interface to the block is through one Result parameter and 10 parameters that are labeled PA 

through PJ.  The Result, PH, PI, and PJ parameters are not used. 

Result:  Count of Running Processes  

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Task Name  String   

PC  Mode  Double Int  U5.0 

PD  Initial Time  Double Int  Msec 

PE  Repeat Time  Double Int  Msec 

PF  Minimum Age  Double Int  Msec 

PG  Survivor count  Double Int  U5.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ       
 

PA  Block Enable 

PB  Task Name 

PC  Block Operating Mode 

PD  Initial Time 

PE  Repeat Time 

PF  Minimum Age 

PG  Survivor Count 



304 | P a g e  
 

The PA block enable input is a switch.  If it is off the block is not active.  If it comes on the block will start 

timing until the PD initial time has elapsed.  If the enable is shut off before PD time the initial timer will 

restart at zero when the block is re-enabled.  When the initial time has passed the block will do the kill.  

The initial time can be set at zero.  The Block Enable input can have a constant value of ‘On’. 

The PB task name is a string that holds the name of the process that is to be killed. 

This integer parameter is used to select future options for the block.  Its value should be set to zero. 

This parameter is a double integer with the Msec format.  It works with the PA enable input to 

determine when the first kill action is performed. 

When PA comes on and the initial time is over the block does the task kill.  The PE parameter is also a 

double integer with the Msec format.  If it is nonzero and the PA enable is held on the kill will continue 

to occur at the PE repeat time interval.  If PE is zero the block will not repeat until the PA enable goes off 

and then back on again. 

The PF Minimum Age parameter is used to determine if an instance of the task can be killed.  If the 

minimum age is nonzero Corsair looks at the creation time of the task.  If it is less than the minimum age 

that task is not killed.  If the minimum age is zero tasks are killed down to the survivor count without 

respect for their age. 

The PG survivor count parameter is an integer parameter that may be used to specify a minimum 

number of surviving instances of the task that will not be killed.  If it is set to zero all the instances will 

be killed. 

For Operating Mode 0 the Task Kill action is: 

Step 1:  Determine how many instances of the task are operating. 

Step 2: If the PG survivor count is greater than or equal to the count from Step 1 the kill is done. 

Step 3: Find the oldest instance of the task. 

Step 4: If PF is nonzero and the age is less than PF the kill is done. 

Step 5: Kill the oldest instance. 

Step 6: Go to Step 1 and repeat. 

The block uses a single integer variable to code its states like this: 

Value 0 – Initialization or Not Enabled 

Value 1 – Doing PD initial timing 

Value 2 – Done (PE Repeat timing is zero) 



305 | P a g e  
 

Value 3 – Doing PE repeat timing 

 

Timer 

This block is used to perform several different timing functions. 

Result:  Output Bit 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Result Output Time Setpoint  Double Int  Msec 

PC  Repeat Time Setpoint (or Zero)  Double Int  Msec 

PD  Step Ouput Count  Integer  U5.0 

PE  Output Step Times (Size PD)  Double Int  Msec 

PF  Step Outputs (Size PD)  Switch   

PG  Single-bit Ouputs (Size PD)  Switch   

PH  Step Cod Number Output  Integer  U5.0 

PI  Result Array Start Index  Double Int  U6.0 

PJ  Accumulated Time Output  Double Int  Msec 
 

 

TOD Schedule 

Used for simple time of day schedules. 

Result:  Result Indication (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Start Times (Size PJ + PD)  Double Int  TOD 

PD  Start Times First Index   Double Int  U6.0 

PE       

PF  End Times (Size PJ + PG)  Double Int  TOD 

PG  End Time First Index  Double Int  U6.0 

PH       

PI  Result Start Index  Double Int  U6.0 

PJ  Times Array Count (>= 1)  Double Int  U6.0 
 



306 | P a g e  
 

Transfer Data 

This block copies a number of values from one array to another whenever it is enabled. It starts at the 

specified PD and PI indexes and moves a total of PJ values in increasing index order. The block will do 1 

move when PJ has a value of 0. 

Result:  Destination Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC  Input Value Array (Size PJ + PD)  String   

PD  Input Value Start Index   Double Int  U6.0 

PE       

PF       

PG       

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume that PD=3, PI=12, and PJ=5 

When enabled the block will copy elements in this order: 

From PC[3] to Result[12] 

From PC[4] to Result[13] 

From PC[5] to Result[14] 

From PC[6] to Result[15] 

From PC[7] to Result[16] 

(See Descending Transfer) 

 

Transfer on Change 

This block is used to do a transfer when a value changes. 

Result:  Destination Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Repeat Time  Double Int  Msec 

PC  Input Value Array (Size PJ + PD)  String   



307 | P a g e  
 

PD  Input Value Start Index  Double Int  U6.0 

PE  Changing Data  String   

PF  Changing Data Index  Double Int  U6.0 

PG  Change Delta  Double Float  -12.5 

PH  Did the Transfer Flag  Indicator   

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

 

Trigger Alerts 

This block is used to coordinate data between two drivers.  The ‘Trigger’ driver set bits in the ‘Trigger 

Switches’ array.  The ‘Alert’ driver responds to the ‘Active Switches’ array and then sets bits in the ‘Done 

Switches’ array. 

Result: Alert Active Switches (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  

Clear 

 

Switch 

  

PC  Trigger Switches (Size PJ + PD)  Switch   

PD  Trigger Switches Start Index  Double Int  U6.0 

PE       

PF  Done Switches (Size PJ + PG)  Switch   

PG  Done Switches Start Index  Double Int  U6.0 

PH       

PI   Result Array Start Index  Double Int  U6.0 

PJ  Result Array Size  Double Int  U6.0 
 

This block can operate with arrays that are hundreds of bits long. 

The block executes only one of the following rules for each element of the arrays.  They are listed in 

priority order: 

Rule 1:  If the PA Enable input is off the block does not do anything. 



308 | P a g e  
 

Rule 2:  If the PB Clear input is on the PC Trigger is shut off, then the Result Active is shut off, then the PF 

Done is shut off. 

Rule 3:  If PC Trigger is on and Result Active is off the PF Done is shut off and then the Result Active is 

turned on.  This is a normal operation to trigger the alert. 

Rule 4:  If Result Active is on and PF Done is on the PC Trigger is shut off, then the Result Active is shut 

off, and then the PF Done is shut off.  This is a normal operation to clear the triggering for an alert. 

Rule 5:  If PC Trigger is off and Result Active is off then PF Done is shut off.  This is a data correction. 

Most applications of this block involve specialized tags whose operation is designed to be used with it.   

Documentation with each driver will indicate if it has tag addresses that are compatible with the PC, PF, 

or result parameters for this block.  Memory tags may also be used with the block. 

A tag may not be used for the PC Trigger parameter on more than one Trigger Alerts block.  Most drivers 

that have a tag address for this use will offer more than one address for use on multiple blocks. 

The PD, PG, PI, and PJ parameters are normally set to integer constants. 

 

Unacknowledged Alarm 

This block is used to turn on an indicator whenever an unacknowledged alarm exists in the Corsair alarm 

list. The indicator goes off when the operator acknowledges the alarm. 

Result:  Unacknowledged Alarm Flag (Size PI + 1) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB       

PC       

PD       

PE       

PF       

PG       

PH       

PI  Result Index  Double Int  U6.0 

PJ       
 

 



309 | P a g e  
 

Within Limits 

This block is used to control indicators based upon if values are between limits. If the PB input value is 

>= the PE minimum and <= the PF maximum the result indicator is turned on. Otherwise it is turned off. 

The action is repeated for a total of PJ elements. 

The PE minimum and PF Maximum may be single values that are used with each element of the input 

array. In this case PG is set to one. PE and PF may also be arrays of values allowing different Min and 

Max values for each element. In that case PG should be set to be equal to PJ 

Result:  Indicator Output Array (Size PJ + PI) 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  Value Input Array (Size PJ + PC)  Double Float  -12.5 

PC  Input Start Index  Double Int  U6.0 

PD       

PE  Minimum Limit (Size PG)  Double Float  -12.5 

PF  Maximum Limt (Size PG)  Double Float  -12.5 

PG  Limits Count (1 or PJ)  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

Assume PC=4, PG=3, PI=5, and PJ=3 

This calls for an array of minimum and maximum values. 

PB[4]=13.2 PB[5]=-4.0 PB[6]=97 

PE[0]=12.6 PE[1]=-2.0 PE[2]=1.0 

PF[0]=13.8 PF[1]=-2.0 PF[2]=4.2 

When enabled the block will do the following: 

Result[5]=On Result[6]=Off Result[7]=Off 

Assume PC=4, PG=1, PI=5, and PJ=3 

This calls for using the same minimum and maximum with each element 

PB[4]=2  PB[5]=3  PB[6]=6 

PE[0]=3 

PF[0]=5 



310 | P a g e  
 

When enabled the block will do the following: 

Result[5]=Off Result[6]=On Result[7]=Off 

 

X/D Plus B 

Parameter  Label  Type   Format 

PA  Enable  Indicator   

PB  X (Input Array) (Size PJ + PC)  Double Float  -12.5 

PC  Input Start Index  Double Int  U6.0 

PD  D (Divisor) (Size PE)  Double Float  -12.5 

PE  Divisor Count (1 or PJ)  Double Int  U6.0 

PF  B (Adder) (Size PG)  Double Float  -12.5 

PG  Adder Count (1 or PJ)  Double Int  U6.0 

PH       

PI  Result Array Start Index  Double Int  U6.0 

PJ  Count (>= 1)  Double Int  U6.0 
 

This block scales an array of PB raw values by using first a division and then an addition. The final sum 

goes into the result array. The action is repeated a total of PJ times. The PD divisor and the PF adder may 

be single values that used with each element of the input array. In this case PE and PG are set to one. PD 

and PF may also be arrays of values allowing different D and B values for each element. In that case PE 

and PG should be set to be equal to PJ. 

Result:  Y Result (Size PJ + PI) 

 

Corsair Batching 
Batching systems can be used to produce a variety of products using different formulas.   There may be 

a large amount of data that needs to be entered for these systems and monitored while they are 

running.  Corsair has features that assist with this type of work. 

One feature is that Corsair tags are all arrays.  Each tag can be given a size for an array element count.  A 

tag called ‘Required Pounds’ with a size of 200 can contain the required pounds of an ingredient for 20 

formulas of 10 steps each.  Corsair sheets can be used to display this data in a row and column form that 

does not require development for each individual cell of the sheet. 

Another feature is Corsair selection.  A formula may consist of a number of steps.  Each step has a type 

code.  0 may be an undefined step, 1 may correspond to an automatic addition, 2 may correspond to a 

mixing step, and so on.  Inside the PLC the step types are encoded with numbers.  The Corsair interface 

shows the text labels for each step type.  The operator selects them by labels, not by number. 



311 | P a g e  
 

There are a number of blocks that are specially designed for use in batching systems. 

Standard Templates 
Corsair contains a number of standard templates to use to display graphic data.  Most of these 

templates represent PLC input and output modules.  They are the basis of the I/O monitoring and 

documentation system. 

The developer can create custom templates using Corsair drawings.  They can then be used in the same 

way as standard templates. 

Burner Control Templates 
The Corsair program can be used to monitor and troubleshoot problems in burner control systems. The 

program has 4 templates that have been pre-programmed to generate screen displays with burner 

control information. 

The first template is named “BURNER1 Burner Control Monitor.” It presents the current status of the 

burner control. It shows what is on the small display that is on the unit. It shows the value of the flame 

signal and what sequence state the unit is in. 

The second template is named “BURNER2 Burner Control Expanded Annunciator.” It is made to work 

with a 7830 expanded annunciator module. This unit has several LED indicators on its front to display 

the status of the interlocking contacts that are needed for the burner to run. It can show either the 

present status of the contacts or a special ‘first-out’ status. The Corsair Annunciator template only 

displays the current status. The fault history template is used to determine ‘first-out.’ 

An important function of the second template is to document what is wired to each of the terminals on 

the annunciator. The annunciator front panel and the small local display use general terms like ‘Auxiliary 

Interlock #2’. The Corsair template display can have the points labeled with descriptions that are specific 

to the installation. 

The third template is called “BURNER3 Burner Control Fault History”. It shows that last 6 faults that the 

control has experienced. This template is especially useful when operators repeatedly reset after shut-

downs without noting what caused the problem. 

The fourth template is called “BURNER4 Burner Control Diagnostics.” It is a record of how the burner 

controlled is configured, its model number, the purge timer that is used, and other information. This 

template is important when contacting the burner control manufacturer for service. A copy of it should 

be printed and kept as a record for each controller. 

 - - - - -  

Burner Control Hardware Connection 



312 | P a g e  
 

Each burner control needs a Modbus communication module. This module may take the place of a local 

display on the front of the burner control. If the existing system has a door-mounter remote display the 

Modbus module replaces the module that is on the front of the burner control. The remote display can 

still be used. 

The burner control Modbus module utilizes a 2-wire RS-485 multi-drop connection. It  can work at 

19,200 baud or at 9600 baud. 19,200 baud is recommended for most installations. Each control gets a 

different switch-selected Modbus address. If there is only one control in a system the recommended 

address is #1. If there are multiple controls on the same wire the recommended addresses would starts 

at #2 and go up from there. 3 Controls would be addresses #2, #3, and #4. This is not a requirement of 

the Corsair software as it will support any non-zero Modbus address. 

Script Steps 
Scripts consist of a number of steps.  Each step has a step type that determines what it does and what 

parameters it requires. 

 

ActiveX Get Property 
Xxx 

 

ActiveX Method 
Xxx 

 

ActiveX Put Property 
Xxx 

 

Append to an FTP File 
Xxx 

 

Delay 
Xxx 

 

Delete a File 
Xxx 



313 | P a g e  
 

 

End Script 
Xxx 

 

Event Test 
Xxx 

 

Execute Block 
Xxx 

 

Goto 
Xxx 

 

Rename a File 
Xxx 

 

See if a File Exists 
Xxx 

 

See if a FTP File Exists 
Xxx 

 

Send Email 
Xxx 

 

Spawn Process 
The Spawn command is used to create and run a new process.  The process is a disk file that can be 

executed.  When the Corsair script is executed Corsair starts the process.  Script execution proceeds to 



314 | P a g e  
 

the next step whether the process started or not.  There is no error checking on whether the process 

started successfully. 

The CorsairHMI developer must enter the path specification for the disk file that is to be executed into 

the Command field on the script step.  

An example of a command would be: 

C:\programs\other_program.exe 

The Corsair program will run an executable file that is named “other_ program”.  It is located in the 

“programs” folder on the C: hard drive. 

CorsairHMI can pass up to 6 fixed items as command-line parameters to the spawned program.  They 

are entered into separate edit boxes when the script step is configured. 

System Command 
The System command is used to send an operating system command to the operating system command 

interpreter.  This is for a command like those typed in from a DOS-style command line.  The command is 

not represented by an executable file on the disk. 

The CorsairHMI developer must enter the complete system command including any of its parameters as 

a single string in a System Command entry edit box. 

 

Upload a File via FTP 
Xxx 

 

 

 

HOA Tags 
 

Operators are familiar with panel switches that are used to control motors. They 
frequently have 3 positions labeled ‘Hand’, ‘Off’, and ‘Automatic’. The motor runs 
continuously with the switch in the ‘Hand’, position. It stays off with the switch in the 
‘Off’ position. The ‘Auto’ position allows the motor to turn on and off according to 
some programmed automatic cycle. 
 
Corsair offers a ‘H-O-A’ device type that provides a computer equivalent to a ‘Hand-Off- 
Automatic’ panel switch. It allows the operator to force an item on, force it off or let it 



315 | P a g e  
 

operate automatically. Each H-O-A device occupies 3 bits of PLC data memory. Each 
bit has a predefined purpose and name. 
 

HAND   ENABLE  STATUS 
 

The least significant bit is the ‘status’ bit. It corresponds to the current running status of 
the item controlled by the H-O-A. The status bit controls the color of a device icon that 
utilizes the H-O-A device. The middle bit is known as the ‘enable’ bit. The most 
significant bit is known as the ‘hand’ bit. The switch positions correspond to the values 
in the enable and hand bits as follows: 
 

Hand   Enable   Position 
   0        0     ‘Off’ 
   0        1     ‘Auto’ 
   1        0     ‘??’(undefined) 
   1        1     ‘Hand’ 

The two bits can be in 4 different combinations. Only 3 of them are valid. The Corsair 
computer will only place the bits in one of the 3 valid combinations. 
There are many possible variations for PLC ladder logic with H-O-A devices. A simple 
example is control of a solenoid valve. Assume that the solenoid has a single output and 
no monitoring inputs. An example rung may look like this: 

 
The enable bit is off when the H-O-A is in the ‘Off’ or ‘??’ positions. In the ‘Hand’ 
position the hand and enable bits are both on so the output is activated. In the ‘Auto’ 
position the enable bit is on and the hand bit is off. This permits the automatic logic 
control the output.  
 
H-O-A logic may be slightly different with motors. An auxiliary contact of the motor 
starter may feed a PLC input. An additional PLC bit is used as a ‘call relay.’ 



316 | P a g e  
 

 
The optional first rung is used to shut off the hand bit on the first scan of the processor. 
This is used to prevent a safety problem from unexpected motor starts on power-up. The 
first rung is not required in situations where the H-O-A status is to be retained through 
power failures. 
 
The 3-bits of the Corsair H-O-A offer tremendous flexibility in control sequences. They 
should be used with caution. The PLC programmer is responsible for system safety at all 
times. Proper safety interlocking must be used whenever automatic logic is overridden to 
force a motor on. 

 

Alarm Forms 
 
CorsairHMI allows the developer to set up alarms that the operator can see on the alarm 
summary window. The operator can acknowledge alarms and sometimes reset them. 
The developer can trip some alarms to see how the system responds to them. 
Corsair can be configured to send an email message when an alarm is tripped, when it is 
acknowledged, or when it is reset. 
 
An ‘Alarm‘ is one type of Corsair database record. There is another type of record that is 
a ‘Call’. Calls are nearly identical to alarms. Calls cannot initiate email messages. Calls 
can be reset without being acknowledged first. Calls appear after alarms on the Alarm 



317 | P a g e  
 

Summary window. Most references to ‘Alarms’ in the rest of this document also apply to 
Calls. 
 
When an alarm is first tripped it appears flashing on the alarm summary window. 
Flashing indicates an ‘Unacknowledged’ alarm. When the operator acknowledges it the 
line on the window stops flashing. When the alarm condition is reset the alarm 
disappears from the summary window. 
 
Alarm Options 
Some alarms can self-reset when the alarm condition clears. A tank high level alarm may 
reset itself when the level goes below the high level alarm setpoint. Other alarms may 
require a reset action by the Corsair operator. A common example is a motor failure 
alarm that indicates that a motor did not start. A plc may try to start the motor and look 
for a starter contact to confirm that the motor is running. If the PLC does not get this 
contact within a short time it would activate the motor failure alarm and shut off the 
output that runs the motor. In most cases the alarm should stay active until the operator 
resets the alarm and the PLC tries to start the motor again. The ‘Operator Reset’ Yes/No 
option on the Corsair alarm record is used by the developer to define how the alarm is 
going to act. 
 
Another alarm option is related to what happens when an alarm has cleared itself before it 
is acknowledged by the operator. Some alarms may be cleared from the summary page 
before acknowledgement occurs. Other alarms should stay on the summary page until 
they are acknowledged to make sure that the operator knows that the alarm occurred. 
The “Latch’ Yes/No option on the Corsair alarm record is used by the developer to define 
this behavior for some forms of alarm. 
 
Alarm State Bits 
Each alarm database record has 4 state bits that are kept within the alarm record itself. 
These bits are designated as follows: 
Status – Bit 0 – least significant 
Latch – Bit 1 
Acknowledge (‘Ack’) - Bit 2 
Special – Bit 3 – most significant 
The Corsair Alarm Summary window looks at three of these bits – Status, Latch, and 
Ack. They have predefined meanings to the Corsair program. The fourth Special bit 
does not have any special significance to Corsair. 
 
The Status bit corresponds to the state of the alarm. It is one when the alarm is active and 
zero when it is not active. A simple high level alarm on a water tank may have a setpoint 
of 12 feet. When the level is 13 feet the alarm status bit would be ‘On’ (1). When the 
level is 11 feet the alarm status bit would be ‘Off’ (0). 
 
The Ack bit is turned on when the Corsair operator acknowledges the alarm. It is used to 
indicate that the operator saw the alarm. Some systems may use this bit to silence some 
sort of audible device like a bell or buzzer. ‘Silencing’ an alarm is not the same thing as 
‘Resetting’ an alarm. 
 



318 | P a g e  
 

The Latch bit is used to ‘remember’ that the alarm status bit has been on when the status 
has been cleared before the alarm is acknowledged. 
 
Sequence of Events for Alarm Bits – Non-Latching Alarm 
Alarm status is set followed by acknowledgement before the status clears: 
Status Latch Ack 
0 0 0 Initial State 
1 1 0 Alarm is tripped but not acknowledged 
1 1 1 Alarm has been acknowledged 
0 1 1 Status Bit is cleared from alarm resetting 
0 0 0 Back to initial state 
Alarm status clears before the alarm is acknowledged: 
Status Latch Ack 
0 0 0 Initial State 
1 1 0 Alarm is tripped but not acknowledged 
0 1 0 Status Bit is cleared from alarm resetting 
0 0 0 Back to initial state 
 
Sequence of Events for Alarm Bits – Latching Alarm 
Alarm status is set followed by acknowledgement before the status clears: 
Status Latch Ack 
0 0 0 Initial State 
1 1 0 Alarm is tripped but not acknowledged 
1 1 1 Alarm has been acknowledged 
0 1 1 Status Bit is cleared from alarm resetting 
0 0 0 Back to initial state 
(This is the same as for a latching alarm) 
Alarm status clears before the alarm is acknowledged: 
Status Latch Ack 
0 0 0 Initial State 
1 1 0 Alarm is tripped but not acknowledged 
0 1 0 Status Bit is cleared from alarm resetting 
0 1 0 Alarm is waiting for acknowledgement 
0 1 1 Alarm has been acknowledged 
0 0 0 Back to initial state 
 
Alarm Operations 
Corsair alarm operations include acknowledging the alarm, resetting the alarm, tripping 
the alarm, and turning the special bits on and off. 
 
Alarm Indexes 
Alarm records that are created under tags use an index value. This value tells where on 
the tag the alarm data is located. A tag may have a size of 10. Up to 10 alarms with 
index values from 0 to 9 can be created under this tag. If an alarm has an index value 
greater than or equal to the tag size the alarm treated as if it has the Memory form. 
 
Alarm Forms 
All alarm records contain all four state bits. The bits get their values in several different 



319 | P a g e  
 

ways depending on how the alarm is configured. Corsair alarms can exist in five distinct 
forms. The forms differ in how the alarm state bits are handled. Some forms are very 
easy for the Corsair developer to create, some require quite a bit more work. Some forms 
require more work for the PLC programmer. 
 
 
Alarm Form: Memory 
Memory alarms are created as free-standing alarm records that are not under a tag. A 
memory alarm’s status bit can only be controlled as the result of a Corsair program block 
that is associated with the alarm. 
 
The Corsair program handles the Latch, Ack, and Special state bits. The Alarm’s Latch 
Yes/No option helps to determine how the alarm state bits operate. 
The alarm index field is not used for this form. 
 
Memory alarms are the simplest alarms to develop. They do not require any PLC logic 
and only very simple Corsair logic. They are the least flexible form of alarm. 
 
Alarm Form: 1-Bit PLC 
For this form a PLC has a tag with the type of 1-Bit Alarm. Alarms can be created under 
this tag. Each alarm gets a PLC address that is calculated from the PLC address of the 
tag. Corsair scans PLC memory and places the results into the tag data. It then transfers 
the tag data into the status state bit of each alarm. 
 
The Corsair program handles the Latch, Ack, and Special state bits. The Alarm’s Latch 
Yes/No option helps to determine how the alarm state bits operate. 
 
Alarm Form: 1-Bit Tag 
For this form a memory tag has the type of 1-Bit Alarm. Alarms can be created under 
this tag. Corsair does not show any PLC address for the alarm. The Alarm index value is 
used to determine where each alarm gets it’s data from the parent tag. Corsair transfers 
the tag data into the alarm status bit of each alarm. 
 
The Corsair program handles the Latch, Ack, and Special state bits. The Alarm’s Latch 
Yes/No option helps to determine how the alarm state bits operate. 
 
Alarm Form: 4-Bit PLC 
For this form a PLC has a tag with a type of 4-Bit Alarm. Alarms can be created under 
this tag. Each alarm gets a PLC address that is calculated from the PLC address of the 
tag. Corsair scans PLC memory and places the results into the tag data. It then transfers 
the tag data into all 4 state bits of the alarm. 
 
The Corsair program does not directly determine the values of the 4 state bits since all 4 
are read from the PLC. The PLC programmer is responsible for sequencing the bits. The 
Alarm’s Latch Yes/No option is not significant with this form. 
 
Alarm Form: 4-Bit Tag 
For this form a memory tag has the type of 4-Bit Alarm. Alarms can be created under 



320 | P a g e  
 

this tag. Corsair does not show any PLC address for the alarm. The Alarm index value is 
used to determine where each alarm gets it’s data from the parent tag. Corsair transfers 
the tag data into all 4 state bits of the alarm. 
 
The PLC programmer is responsible for writing Corsair logic to sequence the 4 state bits. 
This is usually the most complex alarm to implement. The Alarm’s Latch Yes/No option 
is not significant with this form. 
 
Alarm Authority 
All of the alarm forms except a Memory Alarm have one or more alarms created ‘under’ 
a tag. Each tag has a field that may be used to associate an authority tag with it. An 
authority tag is an integer value that determines what the Corsair computer can do with 
the alarm. If the authority tag has a value of zero the computer can see the alarm and can 
acknowledge and reset it without a password. If the authority tag has a nonzero value 
that is less than the size of the password tag a password is required to operate the alarm. 
If the authority device has a larger value the alarm will not be shown on the computer – 
all 4 of its bits will be cleared. 
 
The authority system can be used to enable and disable groups of hundreds of alarms and 
calls. 

 

Battery Low Logic 
The CorsairHMI program has the capability to show if the battery on a data source is low.  Battery low 

monitoring is simple to develop.  The PLC programmer sets up a single bit as an indicator that 

CorsairHMI can monitor.  The Corsair developer created a tag with the Indicator type that reads the bit.  

He then links in into the PLC’s data source record.  When the PLC puts a value of one into the bit Corsair 

shows that the battery is low.  When the PLC puts a value of zero into the bit Corsair shows that the 

battery is OK. 

Clock Logic 
CorsairHMI has the capability to monitor and control a time of day clock from a data source.  Typically 

the data source is a Programmable Logic Controller (PLC).  The software provides standard windows that 

are used by the operator to set the clock.  The PLC programmer must write a small amount of logic to 

create a standardized clock interface for Corsair to use.  This interface requires a single tag in the Corsair 

database.  This is an Integer tag with its changeable flag set to ‘Yes’.  It is recommended to set its format 

to U4.0.  The size of the tag should be at least 15 if the Corsair computer is to be able to set the clock.  It 

can be as low as 7 if Corsair is to read but not set the clock.  After the tag is created the developer links it 

into the PLC’s data source record.  That PLC will now appear on the Corsair clock monitoring screen. 

The Clock monitoring tag with a size of 15 corresponds to 15 integer registers in the PLC.  Registers [0] to 

[6] are used by Corsair to read the clock.  Registers [7] to [14] are used by Corsair to set the clock. 



321 | P a g e  
 

Register assignment is: 

[0]  Clock Read Seconds 0-59 

[1]  Clock Read Minutes 0-59 

[2]  Clock Read Hours 0-23 

[3] Clock Read Day of Week  1-7  1=Sunday  7=Saturday 

[4] Clock Read Day of Month 1-31 

[5]  Clock Read Month 1-12 

[6]  Clock Read Year 

[7]  Clock Set Seconds 0-59 

[8]  Clock Set Minutes  0-59 

[9]  Clock Set Hour  0-23 

[10]  Clock Set Day of Week  1-7  1=Sunday  7=Saturday 

[11]  Clock Set Day of Month 1-31 

[12]  Clock Set Month  1-12 

[13]  Clock Set Year 

[14]  Clock Set Control Bits 

The Corsair interface allows setting the Day of Week (Sunday to Saturday) value but many pieces of 

equipment calculate the day of the week from the date.  They will not allow it to be set. 

The PLC programmer is to write code that puts valid clock values into the [0] to [6] elements.  This code 

does not have to execute on every PLC scan.  One quarter (0.25) second is a recommended update rate 

for these registers. 

The Corsair program sets the clock by writing data into registers [7] through [14] in a single operation.  

The [14] register consists of bits that determine what clock items are changed.  Corsair can change up to 

7 clock items in a single operation by writing a non-zero value to register [14].  The bit assignments are: 

Bit 0 – place value 1 – Set Seconds 

Bit 1 – place value 2 – Set Minutes 

Bit 2 – place value 4 – Set Hours 



322 | P a g e  
 

Bit 3 – place value 8 – Set Day of Week 

Bit 4 – place value 16 – Set Day of Month 

Bit 5 – place value 32 – Set Month 

Bit 6 – place value 64 – Set Year 

When the PLC program sees a non-zero value in register [14] it is to perform the desired clock set 

operations and then place a value of zero into register [14].  It is to ignore values in the [7] to [13] 

registers whose corresponding bit in [14] is not set.  It is not required for the PLC to zero out [7] to [13] 

after a clock set and it is preferable that it does not zero them. 

If the PLC sees a nonzero value in register [14] when it first starts scanning its program the correct action 

is for it to set 0 into [14] without changing any clock values. 

In summary, registers [0] to [6] are set by the PLC and read by CorsairHMI.  Registers [7] through [13] are 

written by CorsairHMI and read by the PLC.  Register [14] is written by CorsairHMI, read by the PLC, and 

then reset to zero by the PLC. 

The operator clock set window has buttons to open a clock data monitor for each PLC.  This window 

shows all of the data in the 15 integer registers and enables the PLC programmer to experiment with his 

clock logic. 



323 | P a g e  
 

 

The check boxes on the left show which of the 7 clock set control bits are set.  These should not stay 

checked if the PLC program is running.  The buttons can be used to turn on the bits to test clock set 

operation,  

 

Shift Indication Logic 
Manufacturing production data is frequently totalized in shifts.  Each production day may consist of 2 

12-hour or 3 8-hour shifts.  It may consist of 2 10-hour shifts with a 4-hour downtime.  Some plants 

change their shift schedules seasonally or to adjust for production demands. 

A production day seldom starts at 00:00 midnight.  Production for December 7th might start at 11:00 PM 

on December 6th.  It could also start at 7:00 AM on December 7th.  Midnight to 7:00 AM on December 7th 

may be counted as December 6th production. 

The PLCs time of day clock is frequently used to determine shifts.  This document describes sample PLC 

logic to handle shift determination and production date in a very simple system.  It should be adequate 

for many purposes. 



324 | P a g e  
 

The example logic has 4 setpoints that are entered by the operator using the Corsair interface.  The first 

setpoint is the time that the date is ‘grabbed’.  The other setpoints are the shift 1, 2, and 3 start times.  

Usually the date grab time is 1 minute after the Shift 1 start time.  Here is a possibility: 

Date Grab Time  7.01   (1 minute after 7 AM) 

Shift 1 Start Time 7.00  (7 AM) 

Shift 2 Start Time 15.00  (3 PM) 

Shift 3 Start Time 23.00  (11 PM) 

In this example the production day begins at 7AM.  At that time the day’s production totals and the 

grabbed date are copied to a place in PLC memory that holds historical data.  The production totals are 

then zeroed.  One minute later the displayed production date is changed to the new day. 

Here’s another possibility: 

Date Grab Time  0.00   (Midnight) 

Shift 1 Start Time 23.00  (11 PM) 

Shift 2 Start Time 7.00  (7 AM) 

Shift 3 Start Time 15.00  (3 PM) 

The production day begins at 11:00 PM on the previous clock day.  That’s the time when historical data 

is saved and the totals are zeroed for the new day.  The new date is grabbed an hour later at midnight.  

This system will totalize production correctly but it will not show the correction production date on the 

interface during the 11 PM to midnight hour.  This is typically not a problem. 

The PLC frequently needs shift production Boolean flags for its totalization.  They can also be used to 

show the current shift on the interface. 

This suggested code is only a starting point for writing PLC shift logic. 

 

Clock_Time := Clock_Hour * 100 + Clock_Minute ; 

Clock_Date := Clock_Month * 100 + Clock_Day_of_Month ; 

IF Clock_Time = Grab_Date_Setpoint THEN 

 Grabbed_Date := Clock_Date ; 

END_IF; 

 



325 | P a g e  
 

----+------    Clock_Time >= Shift_1_Start    ------  Clock_Time < Shift_2_Start------+---( )- Shift 1 

      !                                                                                                                                       ! 

     +----- Shift_2_Start < Shift_1_Start -----+-----Clock_Time < Shift_2_Start  -------+ 

                                                                            !                                                                   ! 

                                                                           +---- Clock_Time >= Shift_1_Start ------+ 

 

 

 

----+------    Clock_Time >= Shift_2_Start    ------  Clock_Time < Shift_3_Start------+---( )- Shift 2 

      !                                                                                                                                       ! 

     +----- Shift_3_Start < Shift_2_Start -----+-----Clock_Time < Shift_3_Start  -------+ 

                                                                            !                                                                   ! 

                                                                           +---- Clock_Time >= Shift_2_Start ------+ 

 

 

 

----+------    Clock_Time >= Shift_3_Start    ------  Clock_Time < Shift_1_Start------+---( )- Shift 3 

      !                                                                                                                                       ! 

     +----- Shift_1_Start < Shift_3_Start -----+-----Clock_Time < Shift_1_Start  -------+ 

                                                                            !                                                                   ! 

                                                                           +---- Clock_Time >= Shift_3_Start ------+ 

 

Email 
 



326 | P a g e  
 

The CorsairHMI Email system is used to send alarm notification and other types of email messages.  A 

frequent use is to send text messages to cell phones.  Messages can be sent to groups of people.  

Different groups can be used at different times.  

The first step to configuring email is done from the main menu ‘Setup’,’Computer Properties’ option.  

Go to the Email tab. 

 

The ‘Send Emails’ checkbox must be checked for the computer to send emails.  With a Windows system 

the ‘Use DLL’ checkbox must be checked.  An email client must be installed and running on the 

computer.  This program must allow other software to send emails without requiring confirmation from 

the operator.  Thunderbird is a tested solution.  Outlook Express may be another possibility.  Microsoft 

Outlook may not allow unattended transmission of messages. 

Many systems do not require any more configuration on the Computer Properties Email tab beyond 

checking the two checkboxes. 

The next step is to use the ‘View’, ‘System Status’, ‘Email Status’ option on the main menu. 



327 | P a g e  
 

 

The email status window provides a way for the developer to test if the Corsair program can send an 

email.  He enters an address in the control that has been initialized with ‘SMTP:’.  A possible entry sould 

be ‘SMTP:joe@joesaddress.com’.  A short subject and message can be entered.  The ‘Send’ button is 

used to attempt to send the email.  The result will show as the bottom entry of the 3 listings in the 

history. 

After email operation has been verified it is time to configure the email system.   Go back to the 

Computer Properties Email tab.  A file specification must be entered in the ‘Config File’ tab.  A suggested 

possibility would be ‘C:\corsair\email_data’. 

Next the main menu’s ‘Edit’, ‘Email’, ‘Data Tree’ option is used. 



328 | P a g e  
 

 

 

The email data window has a tree control on the left side that is used to show all of the email data in a 

tree-structured format.  The developer can click on a tree item and see a description of it on the right 

side of the window. 

There are 4 header items on the root of the email tree.   They are: 

 Address Families 

 Contacts 

 Contact Groups 

 Send Groups 

Data items can be entered under each of these headings.  Each type of data has different options.  There 

are some common options for different data types.  

The Note Option 

The developer can enter a single-line note into each data item.  This can be a description of the item.  It 

does not appear anywhere in any email message.  It is only shown on the email data window and on 

printouts that summarize email configuration. 

The Temporary Marker 

Each data record that the developer enters has a Temporary checkbox associated with it.  This box may 

be checked as a reminder that the record is eventually to be deleted or changed. 



329 | P a g e  
 

An on-call operator may lose his cell phone and need to use a different cell phone until he gets a 

replacement.  The Corsair developer would change the address to his cell phone and then check the 

Temporary marker to show that it will need to be changed. 

The Enable Checkbox 

Each item has a checkbox that is checked by default.  It enables the item.  If it is not checked the item is 

not active.  This Enable status can be changed dynamically from a Corsair tag.  If that option is used a 

nonzero tag index must be entered. 

Transmission Type 

A Transmission type is a method to send data.  Currently the only supported transmission type is ‘email’.  

Other types of transmission may be added in the future.  Cell phone text message use the email 

transmission type. 

Address Family List  

An address family represents a group of addresses that all use the same transmission type.   The 

developer enters the following items: 

 Name 

 Note 

 Radio Buttons – Type:    Email, Future 

 SMTP Prefix Check Box 

 Temporary Check Box 

 Enable Check Box with Tag Index Entry 

The SMTP prefix is checked on by default.  The Windows email system requires this prefix in front of all 

addresses.  If the option is checked the computer puts the prefix in front of each address automatically.  

The developer does not have to enter the prefix on each individual address. 

Contact List 

The Contact List is a database of people that can get emails.  It includes the following items: 

 Name with Tag Index Entry 

 Note 

 Temporary Check Box 

 Enable Check Box with Tag Index Entry 



330 | P a g e  
 

The developer can enter one or more addresses under each contact. 

Address 

The Address is entered under a contact.  Each contact can have multiple addresses.  An address includes 

the following items: 

 Name 

 Address Family Link 

 Note 

 Address String with Tag Index Entry 

 Radio Buttons -   Normal, Always To, Always CC, Always BCC 

 Temporary Check Box 

 Enable Check Box with Tag Index Entry 

Contact Group 

A contact group is a collection of addresses.  Each contact group includes the following items: 

 Name 

 Note 

 All Addresses Check Box 

 Temporary Check Box 

 Enable Check Box with Tag Index Entry 

The developer can link multiple addresses under each Contact Group.  

Contact Group Address Link 

A contact group address link hooks an address to the contact group.  It includes the following items: 

 Address Link 

 Note 

 Radio Buttons -  To, CC, BCC 

 Temporary Check Box 

 Enable Check Box with Tag Index Entry 



331 | P a g e  
 

Send Group 

A send group is a collection of Contact Groups.   Each send group includes the following items: 

 Name 

 Note 

 Send Group Key Number 

 All Contact Groups Check Box 

 Temporary Check Box 

 Enable Check Box with Tag Index Entry  

Send Groups are hooked to Corsair alarms through a nonzero key number that is assigned by the Corsair 

developer.  Each send group should have a different key number. 

The developer can link multiple Contact Groups under each Send Group. 

Send Group Contact Group Link  

A Send Group Contact Group link hooks a Contact Group to the Send Group.  It includes the following 

items: 

 Contact Group Link 

 Note 

 Temporary Check Box 

 Enable Check Box with Tag Index Entry 

A Minimal System 

There is one address family named ‘Cell Phones’.  There is one Contact in the Contact list with one 

address that is linked to the Cell Phones family.  There is one Contact Group.  ‘All Addresses’ is checked.  

There is no need to link any Addresses to the Contact Group. There is one Send Group with key number 

one.  ‘All Contact Groups’ is checked on it.  There is no need to link any Contact Groups to the Send 

Group. 

Tag Connections to the Email System 

The Corsair program can control the email system through tags that use the Email Control driver. 

To be continued 

Email Item Active Indications  



332 | P a g e  
 

Many email tree items have an ‘Enable’ checkbox.  It is checked by default.  The operator can turn off 

the checkmark to deactivate the item.  If a nonzero tag index is entered for the Enable the Enable can be 

checked or unchecked dynamically from tag data. 

The email development window includes an indicator on each item to show if it is active.  If Enable is not 

checked for the item it is not active.  There are additional rules depending on the type of the item. 

An Address is not active unless it is linked to an active Address Family. 

A Contact is not active if it does not have at least one active Address. 

A Contact Group Address Link is not active unless it is linked to an active Address. 

For a Contract Group to be active is must have at least one active Address Link or 

‘All Addresses’ is checked and an active Address exists in the tree. 

A Send Group Contact Group link is not active unless it is linked to an active Contact Group. 

For a Send Group to be active is must have at least one active Contact Group Link or 

‘All Contact Groups’ is checked and an active Contact Group exists in the tree or 

an active Address has an ‘Always’ option selected. 

Email Sending Rules  

When an alarm is tripped, ackked, or reset Corsair first looks to see if ‘Send Emails’ is checked on the 

Computer Properties Email tab. 

It then looks to see what send groups have been attached to that action of the alarm.  Up to 3 groups 

can be assigned to trip, ack, and reset. 



333 | P a g e  
 

 

If all three group numbers are zero no email is sent.  Nonzero group numbers are checked against the 

Send Groups data base.  A group must have a matching key number and be active for the group to be 

sent. 

CorsairHMI Menus 
The CorsairHMI program contain a menu system that can be used to access multiple Corsair interface 
computers over the web. It is shown to the computer operator as to a web browser as a list of links in a 
tree-structured format. This structure may look like this: 

 
 
 
 
 
 
 
 
 
 
 
 
 

    D  

    I  

    H 

    A  



334 | P a g e  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A, B, and C are ‘root’ items at the highest level on the tree. A is a ’parent’ to D. H is a ‘child’ of D. F and G 
are ‘siblings’ and are ‘children’ of B. Each item in the list may have an icon to the left of the text. The 
icon may change as conditions in the system change. The icon on a parent may change to reflect an 
alarm condition on one of its children. The text label may also change dynamically.  
Corsair menus are made of six types of links: 
 

1. Model Links 
2. Folder Links 
3. Web Links 
4. Direct Machine Links 
5. Automatic Machine Links 
6. Configured Machine Links 

A ‘model link’ corresponds to a model file running on a CorsairHMI computer. One instance of the 
Corsair program can use up to 100 models.  
 
The ACME company makes toys and tractors in several plants around the world. It has toy plants in New 
York, Charlotte, Los Angeles, and San Diego. Each of these plants has Corsair plant wide interface using a 
single model file. Each of these models has been copied to a North American Toys headquarters 
computer. Headquarters talks to the plant computer using the high speed MBHR protocol. Each part of 
the plant is isolated with a streaming serial system for data security. The headquarters menu initially 
looks like this: 
 
  New York (Model Link) 
  Charlotte (Model Link) 
  Los Angeles (Model Link) 
  San Diego (Model Link) 
 
Note that all four plants show up as siblings on the root of the menu tree. An operator siting at the 
headquarters computer can click on any item to view it interface data. If someone is browsing the 
headquarters computer over the web he sees the same menu and can do the same thing. 

    B 

    C  

    E  

    F  

    G  



335 | P a g e  
 

Model links are always at the end of a branch of a tree. They cannot have any children. The following 
construction is invalid: 
 
 
 

 

 

 

 

 

In this example, each model is ‘resident’ on the headquarters computer. When the operator clicks on 
the model he views the interface through the Corsair program and not with a web browser. Resident 
models cannot be placed under machine links on the menu. They can be placed under Folder Links. 
A Folder model can be developed on the headquarters machine to display summary data totalized from 
the other four models. Some folder links can provide organization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A (Model Link) 

B (Web Link) 

East Coast (Folder Link) 

West Coast (Folder List) 

New York (Model Link) 

Charlotte (Model Link) 

Los Angeles (Model Link) 

San Diego (Model Link) 

Summary (Model Link) 

Company Web Site (Model Link) 



336 | P a g e  
 

 
 
Now the models are organized under folders. A model cannot have children but a Folder can. A web link 
has been added to access the company’s web site. Web links cannot have children. When the 
headquarters operator clicks on the web link, his browser opens to that address. The same thing 
happens when a remote browser clicks on it.  
Now the company adds a computer for a menu structure for its western hemisphere operators. 
It produces this new structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The North American Toys machine link is configured to point to the North American Toys headquarters 
machine. This machine link will collect all of its child menu data automatically from the downstream 
computer. 
Next the company adds a computer for a menu structure for its worldwide operations.  
It creates this menu structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 

North America (Folder Link) 

Tractors (Automatic Machine Link) 

Toys (Automatic Machine Link) 

Toys (Automatic Machine Link) 

Tractors (Automatic Machine Link) 

Company Web Site (Web Link) 

Western (Automatic Machine Link) 

Eastern (Automatic Machine Link) 

South America (Folder Link) 

International (Folder Link) 



337 | P a g e  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each of these machines links will automatically collect its child menu data. When all of these computers 
have run for some period of time if someone browses the International computer he will see the 
following menu structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

International (Folder Link) 

Western (Machine Link) 

North America (Folder Link) 

Toys (Automatic Machine Link) 

East Coast (Folder Link) 

New York (Model Link) 



338 | P a g e  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that the model links and web link items cannot have child items. When a browser opens a web link 
it gets the URL address from the data that has been enlarged for that link. When the browser opens up a 
model link it browses into from Corsair computer whose IP address is entered into the nearest upstream 
machine link. 
 
Folder links cannot open up web pages by clicking on them. When a menu system is complete each 
folder link will have at least one child. 
 
If an operator is at a Corsair computer and he clicks on a Direct Machine Link the computer does the 
same action as if the ‘Run’ button on the overview page is clicked. If he is browsing the menu and he 
clicks on a Direct Machine Link the browser opens up a window on the Corsair Computer. It may appear 
that this is equivalent to a web link but there are significant differences. A machine link is specified with 
a static IP address. A web link may be specified with a domain name. The Direct Machine Link may be 
passed Corsair credential information. Credential information is not passed to web link. A Direct 
Machine Link will usually not have any children although children are permitted.  
 
An Automatic Machine Link does not open a window when it is clicked on. The computer determines 
what child items belong to the Automatic Machine Link by reading them through the internet. Items 
may appear or disappear as things change downstream. 
 

Eastern (Machine Link) 

Company Web Site (Web Link) 

South America (Folder Link) 

Toys (Automatic Machine Link) 

Tractors (Automatic Machine Link) 

Tractors (Automatic Machine Link) 

West Coast (Folder Link) 

Company Web Site (Web Link) 

Summary (Model Link) 

Charlotte (Model Link) 

Los Angeles (Model Link) 

San Diego (Model Link) 



339 | P a g e  
 

A Configured Machine Link does not open a window when it is clicked on. The Corsair developer must 
manually enter the child items for the link. 
 
Model Link Parameters 
The first parameter of a Model Link is the model number that it appears under in the Corsair computer 
properties. This could range from 1 to 100. The test for the label is also entered. If it is left blank the 
nickname from the Corsair model link is used. If it is also blank the label ‘Model #’ is used. 
 
Web Link Parameters 
The URL that is required by the browser must be entered. The label for the menu item can be entered. If 
the label is left blank the URL is used for the label. 
 
Folder Link Parameters 
The label for the menu item can be entered. If it is left blank the label ‘Folder-#Items’ will be used. 
 
Common Machine Link Parameters 
All Machine Links must have the IP address of the downstream machine entered. This must be a known 
static address. They must have a TCP port address of that machine entered.  If the port address is left at 
zero, the default value of 80 is assumed. 
 
All machine links can have the text label for the link entered. 
 
Direct Machine Link Parameters 
 
Automatic Machine Link Parameters 

Any menu item that is under an Automatic Machine Link cannot be edited by the Corsair developer. 
Children of Automatic links cannot be inserted, deleted, or edited. This is because this information is to 
come automatically through communications. Edits can be made by changing the link to a Configured 
type. 
Configured Machine Link Parameters 

 
 
 

Menu Configuration 

A CorsairHMI program is configured with two menu data structures. One is the ‘web’ menu that is sent 

over the web to a browser. The other is the local menu that is viewed on the Corsair computer monitor. 

Separate file menus can be entered for each of the two menus. In many Systems the two menus are 

identical and the same file name is used for both. The web tab on the Computer Properties is used for 

enabling the menus. It features separate check boxes to enable web and local menus and edit boxes to 

enter file names. A ‘Pass Upstream’ check box is included for the web menu. Another Corsair computer 

may have an Automatic machine link that points to the machine at its menu. It will attempt to hook into 

this computer to obtain menu item information. The ‘pass upstream’ option must be checked for 

information to be passed. Only the web menu can be passed upstream, never the local. Automatic 

machine links can be placed in both web and local menus. In both cases menu data can be collected 

from a downstream machine but always from its web menu. 



340 | P a g e  
 

 

 

 

The Login System 
 

To be continued 

 

MBHR Serial Hosting 
Normal MBHR communications occur between a host computer and multiple remote computers over 

Ethernet.  There is a special hosting option that allows the host computer to also act as a Modbus slave 

device over a serial connection.  This makes it possible for another computer to read and write tag data 

by treating the host computer as if it is a Modbus-compatible PLC.  This is using the Modbus RTU 

protocol and not the Modbus ASCII protocol. 

Web Hosting 
The CorsairHMI developer manual describes how to set up computer properties for web hosting.  This is 

the first step.  The next step is to use the ‘View’ ’System Status’ ’Web Host Status’ menu option to open 

a window that monitors web hosting. 



341 | P a g e  
 

 

The status line shows if Web hosting has started up successfully.  Sometimes it displays a message like 

‘OS Err 5  Access is denied’.  This frequently means that the Corsair program needs to be ‘Run as 

Administrator’.  This is an option in the properties of the shortcut that starts the program.  After it is 

selected the computer may display a box asking the operator if the program should be allowed to make 

changes.  Unattended Corsair computers will have to have this notification shut off so it does not cause 

a problem when restarting after a power failure. 

Once hosting has started it is a good idea to browse the Corsair computer from itself.  Start a browser 

and enter the ‘127.0.0.1’ loopback address.  Verify that you can see the Corsair program.  If the 

computer cannot see itself other computers will not be able to see it. 

The next step is to determine what IP address on the local network must be browsed to see the Corsair 

computer.  The network adapter must have a ‘static’ IP address that is guaranteed not to change even if 

the power is cycled.  An automatically assigned IP address is not guaranteed to continue working.  The 

static address may be something like 192.168.1.12.  Open a browser on another computer on the local 

network and type in that address to verify local operation.  If this does not work Windows Firewall 

settings on the Corsair computer may need to be changed. 

The next step may be to link the Corsair computer to the Internet via a router.  The router must have a 

public static IP address on the Internet.  This address will be different than the IP address of the Corsair 

computer on the local network.  It is provided by the Internet Service Provider who may charge an extra 

fee for it. 



342 | P a g e  
 

For temporary sales demonstrations a ‘What is my IP’ browser enquiry would show the Internet IP 

address for the router at that minute.  This may be used in place of a public static IP for a short period of 

time but it is unsuitable for long-term use. 

The next step is to open up the configuration of the router.  This requires the user name and password 

for the router.  Typically two things need to be configured.  The first is to make sure that the local static 

IP address of the Corsair computer is not in the pool of IP addresses that the router is automatically 

assigning to local computers.  It is highly recommended that this step is taken rather than trust the 

router to keep things the same. 

The next step is to set up port forwarding from the Internet static IP to the local IP of the Corsair 

computer.  This is typically done for port 80.  Your network administrator may require the use of a 

different port number.  This may involve changing the Host URL entry on the Computer Properties Web 

tab. 

This document cannot cover everything that may be encountered when setting up Corsair web hosting.  

A qualified network administrator may be needed to work through addressing and security issues.  He 

will definitely be needed if a VLAN is required. 

The Event Database 
Corsair utilizes a predefined format for the columns in an Event logging SQL database.  This utilizes 16 

columns.  The SQL Expert can be used to format a database for these columns. 

The type of the columns may vary with the chosen database server.  Corsair presently supports 3 types 

of database server: 

 Microsoft SQL Server (Including Express) 

 Old Microsoft SQL Server 

 MySQL 

The Corsair Manual has a printout in the Reference section that details recommended field types for 

each type of database server.  The following list shows general characteristics of the fields.  Consult the 

manual printout for more details. 

Column #1 of 16   EventTime 

This is the time that the event happened.  It can come from the interface computer or from the SQL 

computer.  This column does not allow NULL (empty) data. 

Column #2 of 16  EventType 

This is the label for the type of event with a maximum of 16 characters.  This column does not allow 

NULL data. 



343 | P a g e  
 

Column #3 of 16  ItemName 

This is the tag name of the data item that is involved.  It must allow NULL data. 

Column #4 of 16  ItemIndex 

This is the index of the tag.  It corresponds to an array element.  Values range from 0 to the size fo the 

tag minus 1.  The column must allow NULL data. 

Column #5 of 16  ItemDescription 

A description that is asssociated with the tag.  NULL data must be allowed. 

Column #6 of 16  ItemArea 

This is where the event happened.  It is taken from the area of the ItemName record.  If it has no area it 

is taken from the area of the Node record.  NULL data must be allowed. 

Column #7 of 16  Node 

This is what computer generated the event.  It can be from a record in the program or from the 

computer’s operating system name.  NULL data is not allowed. 

Column #8 of 16  PreValue 

The value before the change.  NULL data must be allowed. 

Column #9 of 16  PostValue 

The value after the change.  NULL data must be allowed. 

Column #10 of 16  Operator 

This is the name of the logged-in operator.  It can be from the program’s log-in system or from the 

operating system’s user name.  NULL data is not allowed. 

Column #11 of 16  Priority 

This is the priority of the event.  Higher numbers are more important.  NULL data must be allowed. 

Column #12 of 16  Tag1Value 

The value of a tag at the time of the event.  NULL data must be allowed. 

Column #13 of 16  Tag2Value 

The value of a tag at the time of the event.  NULL data must be allowed. 

Column #14 of 16  Tag3Value 



344 | P a g e  
 

The value of a tag at the time of the event.  NULL data must be allowed. 

Column #15 of 16  Tag4Value 

The value of a tag at the time of the event.  NULL data must be allowed. 

Column #16 of 16  Comment 

This is an operator-entered multiple-line comment.  NULL data must be allowed. 

Report Forms 
The current event logging system used by the Corsair program is focused on discrete events in time - like 

the tripping of an alarm, an interface starting, an operator entering a note, and so on.  It uses a 

predefined table column format that is not changeable.  

Analog data logging by the Corsair program is typically into .CSV text files.  Each line of the CSV contains 

fields that define the date and time of the entry.  The file names can contain calendar and clock 

dependent labeling.  Corsair can view this data in a graphic plotting format without the use of other 

software tools.  The Corsair Turn-Back-Time system also uses this data.   It can be directly loaded into 

Excel or other tools that can utilize CSV files. 

The event logging system can be used to log analog values into an SQL database with some limitations.  

There are four columns named 'Tag 1' through 'Tag 4'.  These columns are text fields that can be used 

for analog data.  An alarm can be defined that trips at periodic intervals to log these four values.  The 

intervals can change dynamically so that samples are generated more often when values are out of 

range.    Other alarms can be defined that send four different values into the same SQL table.  The values 

from these events can be viewed in a row-column format using the Corsair program or viewed with 

other SQL viewing tools.  Corsair has some capability to print this data.  It does not currently have any 

ability to plot it.  Note that the same data can be sent to both a CSV and to an SQL database.  Corsair has 

been tested with two different versions of Microsoft SQL Server and with MySQL. 

Alarms that are used to trip SQL records can be prevented from appearing on the Corsair Alarm 

Summary window. 

There is a special totalization feature that works with the Corsair SQL event system.  Suppose that a 

water plant has influent and effluent meters feeding into a PLC that is integrating flow.  Corsair can 

generate signals for each meter that occur every time 1000 gallons passes throught the meter.  Each 

time one of these signals is tripped a record is written to the SQL database.  In each of these records the 

'Tag 1' column contains the value '1000.0'.  Corsair can print summary reports and generate CSV files for 

flow totalization based upon time intervals.  It does this by adding up the 'Tag 1' values for the records 

that satisfy its SQL filter settings.  Reports showing total flow from midnight to midnight for every day 

for the past 3 months are possible.  Reports can also show counts of events. 

 



345 | P a g e  
 

 

 

 

Understanding the Modbus Drivers 
CorsairHMI offers several types of Modbus drivers for specific purposes.  The first distinction that must 

be drawn is if the computer is to communicate through an Ethernet port or through a serial port.  This 

determines if an Ethernet or Serial driver is needed.  Sometimes the computer talks through Ethernet to 

get to an external Modbus Ethernet to Serial converter.  An Ethernet driver is needed for this purpose. 

If the computer uses a serial port to get to a Modbus device a serial driver is needed.  The next 

distinction that must be made is what type of serial protocol the device uses.  Modbus serial comes in 

two variants – RTU and ASCII.  They require different drivers.  Ethernet drivers do not have the RTU vs 

ASCII distinction. 

Continue .. 

 

Custom Help Documents 
 

Stuff about custom help documents 

 

Mobile Equipment Tracking 
 

The CorsairHMI program can receive data from NMEA protocol-compliant devices like GPS receivers 

over a serial port.  These devices transmit data using distinct sentences.  There are several standard 

sentence types that are used to send latitude, longitude, speed, bearing, and time information.  Corsair 

only responds to a limited number of sentence types.  The Sentence List printout is used to see what 

features your version of Corsair is using from each sentence type.  This is important when you verify that 

the Corsair program can work with your equipment. 

Wiring 

The GPS equipment is typically wired to the Corsair computer through a standard RS-232 serial port.  

The Corsair GPS driver only receives data from the GPS.  It never transmits to the GPS.  In many cases it 

may be desirable to not hook up the data line that transmits from the computer to the GPS.  This 



346 | P a g e  
 

eliminates the possibility of the Corsair Integrator being falsely accused of sending data to the GPS to 

‘hack into’ a navigation system.  If the GPS is critical it is highly recommended to put a serial port optical 

isolator on the line so that electrical disturbances on the computer or the GPS will not propagate to the 

other system. 

It may be desirable to have a bidirectional cable for start-up purposes if GPS set-up software is being 

used and then switching to a unidirectional cable for Corsair operation. 

Data Format 

Internally Corsair latitude and longitude values are kept in signed 64-bit integer values that represent 

hundred thousandths of a degree.  A value of 3000000 means 30 degrees.  North latitude is positive.  

South latitude is negative.  East longitude is positive.  West longitude is negative. 

Latitude and longitude values are shown to the operator and entered in a text format.  The text format 

is: 

 Latitude   N (space) # D (space)  ##.### M 

Longitude  E (space) # D (space) ##.### M 

The Latitude prefix is N or S for North or South.  Longitude is E or W for East or West.  The number of 

degrees is a variable width number with no leading zero padding.  It can be 0-90 for latitude and 0-180 

for longitude. 

Minutes will only show if they are nonzero.  The minutes value is one or two characters varying from 0 

to 59.  Decimal portions of a minute will only show if they are nonzero with a variable width up to 4 

places. 

The text formal displays up to 4 decimal places on the minutes.  The internal 64-bit integer actually 

holds to 5 decimal places which are rounded to 4 for the text display. 

Valid strings include: 

N (space) 28 D 

E (space) 28 D (space) 23 M 

S (space) 12 D (space) 59.56 M 

E (space) 153 D (space) 12.4567 M 

Development 

The first step of GPS system development is to set the properties of the serial port under the 

Setup/Comms Port Properties menu option.  The NMEA standard calls for 4800 baud communication 



347 | P a g e  
 

with no parity, 8 data bits, and 1 stop bit.  This should be the first combination that is tried if the 

documentation on the equipment does not list something else. 

The next step is to create a driver record in the database.  Pick Edit/ Data/ Drivers and press F4 to create 

a driver.  Go to the ID column and press F2 to enter a name for the driver.  Go to the type column and 

press F2 followed by F1 to get the driver type selector.  Select the “GPS – NMEA Compatible GPS Serial” 

driver type.  Go to the Port column and press F2 to enter the proper serial port number.  The range of 

serial ports is from 1 to 10. 

While still on the driver record, press the F6 key to go to single record editing of the driver.  Use the 

About button to print a short printout describing details of the NMEA driver. 

Click on the PLC (Data Source) button to edit the PLC records that are on the driver.  Press F4 to create a 

Data Source for the GPS.  Go to the ‘Real’ column and press F2 to enter Y for Yes. 

While still on the data source record, press the F6 key to go to single record editing of the data source.  

There is a button labeled ‘Res Addr’ for Reserved Addresses.  It is used to automatically create tags using 

the proper reserved address labels for the driver.  Click on it and pick OK.  The Tags button should now 

show that some tags are present.  Click on it to see the tags that have been created.  Note that the name 

of the tag is the same as the Start Address.  The Start Address labels must not be changed.  The Tag 

names can be changed if desired.  The driver’s About printout gives some information as to the function 

of each tag. 

Note that the GPS driver can only deal with a single stream of NMEA compatible data on a single serial 

port.  A second GPS hooked to a second serial port would require a separate driver record.  External 

sentence combiner hardware may be used to combine data from two pieces of equipment like a GPS 

and a depth finder into a single serial line.  The Corsair program would treat this data like it comes from 

a single source. 

Be sure to save the Corsair application file when the development is completed. 

Startup 

The next step is to turn on the GPS equipment and click on the Interface checkbox to start Corsair’s 

interface operation.  Use the Tools/  PLC/  Registers menu option – select the GPS PLC if there is more 

than one option – and the GPS status window appears.  The GPS Online checkbox should be checked.  It 

is a display-only checkbox – the operator cannot click on it.  Some received sentences should appear.  

Corsair will show a count of how many sentences of each type it has received and how many unknown 

sentences it has received.  There is a button to zero these counts if desired.   Frequently unknown 

sentences are not a problem since manufacturers send proprietary sentences for their equipment that 

Corsair can ignore. 

The GPS Status window may show sentence types that Corsair recognizes as sentences but Corsair does 

not use any of the data from that type.  It may only use part of the data from other sentence types.   You 

may submit requests to CorsairHMI for additional sentence capabilities to be added to the driver. 



348 | P a g e  
 

Unknown Sentence Types 

If you want to see what the GPS is sending for the unknown sentence types you can view them with the 

Corsair Comms Trace window.  Select the Tools/ Comms Trace menu option.  Enter the proper serial 

port number (1-10) in the edit box to the right of the Port radio button.  Select the Port radio button. 

Click on the start button on the bottom of the window.  Characters should start to fill the screen.  After a 

short time click on the Pause button.  The incoming characters are separated into sentences by header 

notes as you scroll through the data.  For recognized sentence types the header will say “GPS Sentence – 

Count of ##”.  Unknown types will have a different header showing that Corsair cannot classify the 

sentence. 

Sentence List  

The Corsair program can print an informative list of sentence data that may assist the developer in 

understanding what his GPS is doing.  Select File/ Print/ Application Manual.  Select the desired printer.  

From the initial ‘Printing’ tab click on the Nothing button.  Pick the Reference tab and check the GPS 

Sentences option.  Corsair will tell you the page count.  Click on OK to make the printout. 

Corsair lists several sentence prefixes and portions of prefixes on the printout for sentences that it does 

not use.   The purpose of the printout is to give the Corsair developer a starting point for understanding 

the sentences that he is seeing from his equipment and what Corsair is using them for. 

NMEA standard sentences begin with a 2-character code defining the type of equipment.  This is 

typically GP for GPS equipment.  The next three letters determine the type of sentence – like RMC for a 

complete sentence prefix of GPRMC. 

Vendor proprietary sentence prefixes begin with P followed by a three-character code for the vendor 

followed by additional information.  A prefix that begins with PGRM is proprietary to Garmin.  A prefix 

that begins with PMOT is proprietary to Motorola. 

Corsair Mobile Equipment Tracking  

When the Corsair program is used for a Mobile Equipment Tracking (MET) application it is common to 

want the location of the equipment to be translated to an English language text string.  Sometimes the 

piece of mobile equipment has a GPS, a slave Corsair computer, and a data radio on it.  The slave 

computer uses the data radio to send latitude and longitude coordinates to a master Corsair computer.  

The master computer could name what area the piece of equipment is currently in.  An icon 

representing the current position of the equipment could move around the screen as the equipment 

drives around the site. 

The Corsair program has two specialized function blocks that are used to work with GPS coordinate 

information.  These blocks are named ‘GPS Markers’ and ‘GPS Areas’ 

The GPS Markers Block 



349 | P a g e  
 

Corsair GPS markers are single-point locations that are defined by their latitude and longitude 

coordinates.  The block is a subprogram that is used to calculate how which marker is closest to the 

current position of the equipment. 

The GPS Areas Block 

Corsair GPS Areas are defined by the latitude and longitude coordinates of 4 points that form a 4-sided 

polygon.  The sides of the polygon do not have to be at right angles – it does not have to be a rectangle.  

The block is a subprogram that is used to calculate which area contains the current position of the 

equipment. 

Features Common to Both Blocks  

Both the GPS Markers and GPS Areas blocks have the ability to convert GPS latitude and longitude 

coordinates to screen pixel positions.  A single block can do this calculation for several screens.  The 

developer may desire to have one screen that is an overview of a city and 4 more detailed screens that 

correspond to quadrants of that city.  The block would have to do pixel calculations for 5 different 

screens.  Systems can be developed that use several Markers or Areas blocks to show several pieces of 

equipment on the screens at the same time.  Each block can use the same Marker or Area data but 

different GPS coordinates for the different pieces of equipment. 

The Modbus Memory Map File  

A recommended place to keep the Marker or Area setup data is in a Modbus Memory Map file.  This is a 

disk file that the Corsair developer can treat as if it is a Modbus-compatible PLC.  Tag data can be read 

from and written to the file without the developer having to worry about any Load or Save operation. 

Pick Edit/ Data/ Driver and press F4 to create a driver record.  F2 on the ID column and name it ‘Memory 

Map Driver’.  Go to the Type column and press F2, F1 to get the driver type selector.  Pick ‘MBMM – 

Modbus Memory Map’ for the type of the driver. 

Go to the Data Sources (PLCs) column and press Z to Zoom.  Press F4 to create a data source.  Go to the 

ID column and F2 to enter the name ‘Block Setup Data Memory Map’.  

While still on the ID column, press Z to zoom.  This opens up the Special Setup window for the Data 

Source.  Arrow up and down and press F2 to edit the fields.  Here are suggestions: 

File Name    c:\corsair\mbmm 

4X Register Count      10000 

Create File if not existing       Yes 

File is Shared      No 

Periodic Refresh Time (0 to disable)   0s 



350 | P a g e  
 

Block Parameters and Tag Names  

The GPS Markers and GPS Areas blocks have similar parameters.  The tag names that are mentioned in 

this document are only recommendations.  The Corsair developer is free to choose other names.  Tag 

types and formats should be followed exactly. 

The first thing that the developer has to do is determine if he wants to use the GPS Markers or the GPS 

Areas block.   The tag recommendations in the rest of this block will use the term ‘Marker’.  If the Areas 

block is chosen the developer is encouraged to substitute the term ‘Area’. 

 The next thing to do is determine how many markers or areas the system will use.  This document will 

use 100 for its example.  The next decision is how many screens the block will have to perform pixel 

calculations for.  This example will be for 5 screens. 

The first group of 5 tags that need to be entered will be block setup data that is a part of the Modbus 

memory map data source.  Click on Edit/ Data/ Data Sources and go to the one named ‘Block Setup Data 

Memory Map’.  Go to the Tags column and press Z to zoom. 

Press F4 5 times to create 5 tags on the memory map. 

Here are the parameters for the 5 tags: 

Tag: Marker Latitude Table 

 Type: 64-bit integer 

 Format: Latitude 

 Changeable: Yes 

 Size: 100 if markers, 400 if areas 

Tag: Marker Longitude Table 

 Type: 64-bit integer 

 Format: Longitude 

 Changeable: Yes 

 Size: 100 if markers, 400 if areas 

Tag: Screen Latitude Table 

 Type: 64-bit integer 

 Format: Latitude 

 Changeable: Yes 



351 | P a g e  
 

 Size: 10 (2 times the number of screens) 

Tag: Screen Longitude Table 

 Type: 64-bit integer 

 Format: Longitude 

 Changeable: Yes 

 Size: 10 (2 times the number of screens) 

Tag: Marker Name Strings 

 Type: String 

 Length: 20 (or longer if you wish) 

 Changeable: Yes 

 Size: 101 (The number of Markers or Areas plus 1) 

Types can be entered by going to the type column and pressing F2, F1, to get the Type Selector.  

Formats can be entered by going to the format column and pressing F2,F1 to get the Format Selector.  

Latitude and Longitude are considered to be special formats – select the Special radio button on the 

format selector and they can be selected. 

Go up to the first tag on the memory map – the Marker Latitude Table.  Go to the Start Address column 

and F2 to enter a starting Modbus address of 400001.  Corsair will show you a Modbus End address for 

the tag (either 400400 or 401600).  Arrow down one record to the start address of the next tag and 

press F2 to enter the next available Modbus register (either 400401 or 401601).  Continue until you have 

Modbus register addresses for all 5 tags.  Examine the end address for the last tag.  If it is greater than 

410000 you will have to adjust the 4X register count on the ‘Block Setup Data Memory Map’ data 

source.  It is recommended that the count should be slightly larger than the last register.  The leading ‘4’ 

in the address is not taken into account for this size.  As an example: 

Last Address:  400980    Data Source 4X Register Count:  1000 or more 

Last Address: 420500    Data Source 4X Register Count:  20600 or more 

Excessively high 4X register counts waste memory and disk space and slow the system down. 

Be sure to save the application file after these tags are created. 

The next group of tags that must be created are memory tags. Make sure that the Interface check box is 

off so that the interface is not running.  Click on Edit/ Data/ Tags.  Arrow to the top of the tag table.  

Press F4 13 times if you are using markers or 12 times if you are using areas to create 13 or 12 tags.  



352 | P a g e  
 

Look at the column labeled Data Source (PLC).  It should have two question marks in it for each of the 

tags that you just created.  If it does not, enter ‘??’ into this column. 

The tags should be as follows: 

Tag: Current Marker Index 

 Type: Integer 

 Format:  U5.0 

 Changeable: Yes 

 Size: 1 

Tag: Returned Pixel Positions 

 Type: Double Int 

 Format: -5.0 

 Changeable: Yes 

 Size: 10 (2 times the number of screens) 

Tag:  Screen 1 GPS Pixel X 

 Type: Double Int 

 Format: -5.0 

 Changeable: Yes 

 Size: 1 

Tag: Screen 1 GPS Pixel Y 

 Type: Double Int 

 Format: -5.0 

 Changeable: Yes 

 Size: 1 

The following tags have identical fields to the ‘Screen 1 GPS Pixel X’ tag. 

Tag: Screen 2 GPS Pixel X 

Tag: Screen 2 GPS Pixel Y 



353 | P a g e  
 

Tag: Screen 3 GPS Pixel X 

Tag: Screen 3 GPS Pixel Y 

Tag: Screen 4 GPS Pixel X 

Tag: Screen 4 GPS Pixel Y 

Tag: Screen 5 GPS Pixel X 

Tag: Screen 5 GPS Pixel Y 

For a marker system only, the last tag is: 

Tag: Distance to Marker 

 Type: Double Float 

 Format: -5.2 

 Changeable: Yes 

 Size: 1 

Be sure to save the application file after these tags are created. 

Arrow up to the Current Marker Index record and press F6 to do to Single Record Editing mode.  Click on 

‘Block’ and pick ‘GPS Areas’ or ‘GPS Markers’ as desired.  Click on Accept to lock in the block.  

Click on Parameters to set up the block parameters.  Parameters should be set as follows: 

PA: 

 Tag?  No 

 Tag or Constant:  On 

PB: 

 Tag?:  Yes 

 Tag or Constant:  Latitude (from the GPS) 

PC: 

 Tag?:  Yes 

 Tag or Constant: Longitude ( from the GPS) 

PD: 



354 | P a g e  
 

 Tag?:  Yes 

 Tag or Constant:  Marker Latitude Table (from the Memory Map file) 

PE:  

 Tag?:  Yes 

 Tag or Constant: Marker Longitude Table (from the Memory Map file) 

PF:  

 Tag?:  Yes 

 Tag or Constant:  Marker Name Strings (from the Memory Map file) 

PG:    This parameter is used for Markers but not for Areas 

 Tag?:  Yes 

 Tag or Constant:  Distance to Marker (a memory tag) 

PH: 

 Tag?:  Yes 

 Tag or Constant:  Screen Latitude Table (from the Memory Map file) 

PI: 

 Tag?:  Yes 

 Tag or Constant:  Screen Longitude Table (from the Memory Map file) 

PJ: 

 Tag?:  Yes 

 Tag or Constant:  Returned Pixel Positions (a memory tag) 

Press Accept to lock in the parameters and verify that they are correct. 

Be sure to save the application table after these parameters are assigned. 

Pixel Position Data Transfers  

The block will be loading 10 pixel values based upon the GPS position.  These go into the Returned Pixel 

Positions tag.  This tag has a size of 10 so it consists of elements that are indexed as 0 through 9.  The 

values are stored as follows: 

Index 0 – needs to be transferred to ‘Screen 1 GPS Pixel X’ 



355 | P a g e  
 

Index 1 – needs to be transferred to ‘Screen 1 GPS Pixel Y’ 

Index 2 – needs to be transferred to ‘Screen 2 GPS Pixel X’ 

and so on until 

Index 9 – needs to be transferred to ‘Screen 5 GPS Pixel Y’ 

 

Pick Edit/ Data/ Tags and go to the ‘Screen 1 GPS Pixel X’ tag.  Press F6 to go to Single Record Editing 

mode.  Click on ‘Block’ and pick ‘Transfer Data’.  Click on accept to lock in the block. 

Click on Parameters to set up the block parameters.  Parameters should be set as follows: 

PA: Enable 

 Tag?:  No 

 Tag or Constant:  On 

PC: Input Value Array 

  Tag?:  Yes 

 Tag or Constant:  Returned Pixel Positions (the memory tag) 

PD: Input Value Start Index 

 Tag?:  No 

 Tag or Constant: 0  

PI: Result Array Start Index 

 Tag?: No 

 Tag or Constant: 0 

PJ: Count 

 Tag?:  No 

 Tag or Constant: 1 

The parameters for the ‘Transfer Data’ block on the ‘Screen 1 GPS Pixel Y’ tag are identical except the PD 

Input Value Start Index should be a constant value of 1.  The pattern continues.  PD is 9 on the ‘Screen 5 

GPS Pixel Y’ tag. 

Creating the Screens 



356 | P a g e  
 

The next step is to create the 5 screens for the city.  Select Edit/ Graphics/ Screens and press F4 five 

times to create 5 screen records.  Go to the Name column and F2 on each one to give it a name.  The 

first one may be named ‘Overview’.  On each of the other 4 screens, go to the Escape Screen column 

and press F2 F1 to open the screen selector.  Select Overview as the Escape screen for each of the 4 

quadrant details screens.  Two question marks should show in the Escape Screen column for the 

overview. 

Go to the GPS Marker or Area Tag column on each screen record.  Press F2 F1 to open the tag selector.  

Select the ’Current Marker Index’ tag into each of the 5 screen records.  

Go to the GPS Screen Number column on the overview record.  Press F2 and enter a 0 for the screen 

number on the overview, 1 for the second screen, and so on until a value of 4 is entered for the last 

record ??????? 

Or is it 1-5?? 

GPS Positioned Icon Placement 

It is now possible to create one icon placement on each screen that moves with the mobile equipment.  

The first step is to create a small bitmap icon in a separate program from Corsair.  Save it to the 

Windows clipboard. 

Pick Edit/ Graphics/ Icon and press F4 to create an icon record.  Go to the name column and press F2 to 

enter the name ‘Mobile Icon’ for the icon.  Go to the show handle column and press F2 to enter Y for 

Yes. 

Press Z to zoom on the icon record.  Pick the Edit/ From Clipboard menu option.  The icon should now be 

showing on the screen.  Move the cursor to the center of the icon.  Press F3 and then OK to set the 

handle point of the icon.  It should be shown with some crossed lines. 

Save the Corsair application file so that the icon is not lost. 

Go to Edit/ Graphics/ Screens and arrow up to the Overview screen.  Press Z to zoom on it so that you 

can create screen placements.  Move the cursor to a blank location.  Press F4 to create a placement. 

Give it a type of ‘Icon’.  Next give it an action of ‘Display’.  You should now see the icon placement 

editing window.  Pick the ‘Icon’ button to select the ‘Mobile Icon’ into that field.  Pick the ‘X Tag’ button 

and select the ‘Screen 1 GPS Pixel X’ tag into that field.   Pick the ‘Y Tag’ button and select the ‘Screen 1 

GPX Pixel Y’ tag into that field.  Pick OK to lock in the changes and close the placement editing window. 

Save the Corsair application file. 

Accessing Block Setup 

It is possible to place a key on a screen that can be used to quickly access the GPS Markers or Areas 

setup windows. 



357 | P a g e  
 

 

 

Unreliable Data Transfer 
There are some data transfer mechanisms that must be considered to be unreliable – that they do not 

work all the time.  The most common example of this is data transfer over a cellular telephone modem, 

especially when the modem is on a moving vehicle.  Data transfers will fail when the vehicle is in an area 

that does not have cellular service. 

This article is to illustrate logic that may be used with a CorsairHMI system to establish data transfers in 

systems of this type.  The logic has a level of reliability that should be adequate for most applications.  

This document assumes that CSV(comma-separated-variable) text file data is to be transferred from a 

Corsair computer on a vehicle to a computer that exists in a data center somewhere.  Files that exist on 

the hard drive of the Corsair computer on the vehicle are considered to be ‘Vehicle’.  Files that exist at 

the data center are considered to be ‘Center’.  The file transfer mechanism is FTP.  All FTP transfers are 

initiated by the Corsair computer. 

The Corsair computer is logging time-stamped data into a CSV file.  It adds records to it at regular 

intervals, 10 seconds in our example.  Each hour the data is to be transferred to the Center. The center 

reads the CSV file and transfers its data to an SQL database.  The object is to not lose any data. 

Assume that the Vehicle file that is generated by the Corsair data logging system is data_log.csv.  Part of 

the Corsair program is adding a record to this file every ten seconds.    The data centers file is named 

center_log.csv. 

The First Attempt 

The initial thought is that the Corsair program should execute the following logic every ten seconds: 

FTP upload data_log.csv to center_log.csv 

Delete data_log.csv 

Within ten seconds a new data_log.csv file will appear and begin filling up with records. 

The initial though is that the data center should periodically execute this logic: 

Process the records in center_log.csv 

Delete center_log.csv 

Data Center Synchronization Issues  



358 | P a g e  
 

Synchronization problems can occur when the program at the Data Center is not running for a period of 

time.  Corsair may upload a new center_log.csv file before the data center has processed the old one.  It 

may upload the file during the time that the data center is working on the old one.  

Clock-Based Synchronization 

 It may be suggested that this problem may be solved by using the time of day clocks that are in the 

computers at both ends.  Corsair could push at the top of each clock hour, perhaps only during the first 5 

minutes.  The data center would then have 55 minutes to process the center_log.csv file. 

Clock based approaches to the synchronization problem do not work well.  The two clock settings will 

probably not match.  If Corsair has a loss of cell service during its 5-minute window it cannot try again to 

send data until the next hour.  If the cell service is out again at that time the problem repeats. 

If the data center program is not running during its 55 minute window of time Corsair will wipeout the 

center_log.csv file when it uploads the next time. 

Clock-based synchronization has issues with both data throughput and reliability.  It is not 

recommended.  The Corsair program should not be bound as to when it sends the data.  The data center 

should not be bound as to when it processes the data. 

File Appends 

A next suggestion might be to let the Corsair program append to the file instead of overwriting it.  The 

center_log.csv file would continue to grow until the data center program processed and deleted it.  If 

the data center program was not running it would just have a larger file to work on when it started up.  

This would be an improvement but there still may be a problem if Corsair is writing to the file at the 

same time that the data center is processing it.  If the data center processed 10 records and then 

deleted the file as Corsair was attempting to write an eleventh record there could be problems.  

Operating system file locking may only be a partial answer to this problem.   A solution that does not 

rely on it is preferred. 

Corsair Program Synchronization Issues  

There may be file synchronization issues within the Corsair program.  It is trying to add a new record to 

the file every 10 seconds but it may take longer than that for the FTP transfer to occur.  If it deletes the 

vehicle data_log.csv file after the transfer a record or records may be missed. 

Suggested Logic for the Data Center  

The first step is to utilize a separate ‘working’ file at the data center named center_work.csv.  The data 

center would never process records directly from the center_log.csv file.   It would do the following logic 

at regular intervals: 

If center_log.csv does not exist – End script 

Rename center_log.csv to center_work.csv 



359 | P a g e  
 

Process the records in center_work.csv 

Delete center_work.csv 

End script 

In order for this to work logic must be incorporated into the Corsair program that guarantees that it 

never uploads the center_log.csv file when it already exists at the data center. 

Suggested Logic for the Corsair Program 

The Corsair program must also use a ‘transfer’ file named data_transfer.csv.    The logic is quite a bit 

more complex.  Assume that it is called every hour.  If a communication does not go through it is to be 

retried. 

0 Step Label:  Check Temporary File 1 

 Step Type:  See if a File Exists 

  File Name:    data_transfer.csv 

  On Exists:    Goto    (1)    Check Server File 1 

  On Error:    Goto    (11)    Check Source File    (it doesn't exist) 

 Remark:    See if the temporary file is on the local drive 

- - - - - - - - - - - - - - 

1 Step Label:  Check Server File 1 

 Step Type:  See if a FTP File Exists 

  File Name:    center_log.csv 

  On Exists:    Goto    (2)    Wait for Server 1 

  Connect Error:    Goto    (4)   Wait for Connect 1 

  On Error:    Goto    (6)    Upload Temporary File 1    (it doesn't exist) 

 Remark:    Check if the server file is out of the way 

- - - - - - - - - - - - - - 

2 Step Label:  Wait for Server 1 

 Step Type:  Delay    60 Seconds 

 Remark:    Wait for the server to remove the file 



360 | P a g e  
 

- - - - - - - - - - - - - - 

3 Step Label:  Check Server Again 1 

 Step Type:  Goto    (1)    Check Server File 1 

- - - - - - - - - - - - - - 

4 Step Label:  Wait for Connect 1 

 Step Type:  Delay    120 Seconds 

 Remark:    Wait for the connection problem to clear 

- - - - - - - - - - - - - - 

5 Step Label:  Check Server Again 2 

 Step Type:  Goto    (1)    Check Server File 1 

- - - - - - - - - - - - - - 

6 Step Label:  Upload Temporary File 1 

 Step Type:  Upload an FTP File 

  Local File Name:    data_transfer.csv 

  Remote File Name:    center_log.csv 

  On Success:    Goto    (9)     Delete Temporary File 1 

  Connect Error:    Goto    (7)    Wait for Connect 2 

  On Error:    Goto    (23)   End    (did not transfer) 

 Remark:    Push the temporary file up to the server 

- - - - - - - - - - - - - - 

7 Step Label:  Wait for Connect 2 

 Step Type:  Delay    120 Seconds 

 Remark:    Wait for the connection problem to clear 

- - - - - - - - - - - - - - 

8 Step Label:  Upload Again 1 



361 | P a g e  
 

 Step Type:  Goto    (6)    Upload Temporary File 1 

- - - - - - - - - - - - - - 

9 Step Label:  Delete Temporary File 1 

 Step Type:  Delete a File 

  File Name:    data_transfer.csv 

  On Exists:    Goto    (10)    Wait for Server 2 

  On Error:    Goto    (10)    Wait for Server 2 

 Remark:    Delete the temporary file after the successfull transfer 

- - - - - - - - - - - - - - 

10 Step Label:  Wait for Server 2 

 Step Type:  Delay    60 Seconds 

 Remark:    Wait for the server to remove the file 

- - - - - - - - - - - - - - 

11 Step Label:  Check Source File 

 Step Type:  See if a File Exists 

  File Name:    data_log.csv 

  On Exists:    Goto    (12)    Check Server File 2 

  On Error:    Goto    (23)    End    (it doesn't exist) 

 Remark:    See if the source file is on the local drive 

- - - - - - - - - - - - - - 

12 Step Label:  Check Server File 2 

 Step Type:  See if a FTP File Exists 

  Remote File Name:    center_log.csv 

  On Exists:    Goto    (13)     Wait for Server 3 

  Connect Error:    Goto    (15)    Wait for Connect 3 



362 | P a g e  
 

  On Error:    Goto    (17)    Rename Source To Temporary    (it doesn't exist) 

 Remark:    Check if the server file is out of the way 

- - - - - - - - - - - - - - 

13 Step Label:  Wait for Server 3 

 Step Type:  Delay    60 Seconds 

 Remark:    Wait for the server to remove the file 

- - - - - - - - - - - - - - 

14 Step Label:  Check Server Again 3 

 Step Type:  Goto    (12)    Check Server File 2 

- - - - - - - - - - - - - - 

15 Step Label:  Wait for Connect 3 

 Step Type:  Delay    120 Seconds 

 Remark:    Wait for the connection problem to clear 

- - - - - - - - - - - - - - 

16 Step Label:  Check Server Again 4 

 Step Type:  Goto    (12)    Check Server File 2 

- - - - - - - - - - - - - - 

17 Step Label:  Rename Source To Temporary 

 Step Type:  Rename a File 

  Old Name:    data_log.csv 

  New Name:    data_transfer.csv 

  On Success:    Goto    (18)    Check Temporary File 2 

  On Error:    Goto    (18)    Check Temporary File 2 

 Remark:    Rename to create a temporary file 

- - - - - - - - - - - - - - 



363 | P a g e  
 

18 Step Label:  Check Temporary File 2 

 Step Type:  See if a File Exists 

  File Name:    data_transfer.csv 

  On Exists:    Goto    (19)    Upload Temporary File 2 

  On Error:    Goto    (23)    End    (it doesn't exist) 

 Remark:    See if the temporary file is on the local drive 

- - - - - - - - - - - - - - 

19 Step Label:  Upload Temporary File 2 

 Step Type:  Upload an FTP File 

  Local File:    data_transfer.csv 

  Remote File:    center_log.csv 

  On Success:    Goto    (22)    Delete Temporary File 2 

  Connect Error:    Goto    (20)    Wait for Connect 4 

  On Error:    Goto    (23)    End    (did not transfer) 

 Remark:    Push the temporary file up to the server 

- - - - - - - - - - - - - - 

20 Step Label:  Wait for Connect 4 

 Step Type:  Delay    120 Seconds 

 Remark:    Wait for the connection problem to clear 

- - - - - - - - - - - - - - 

21 Step Label:  Upload Again 2 

 Step Type:  Goto    (19)    Upload Temporary File 2 

- - - - - - - - - - - - - - 

22 Step Label:  Delete Temporary File 2 

 Step Type:  Delete a File 



364 | P a g e  
 

  File Name:    data_transfer.csv 

  On Exists:    Goto    (23)    End 

  On Error:    Goto    (23)    End 

 Remark:    Delete the temporary file after the successfull transfer 

- - - - - - - - - - - - - - 

23 Step Label:  End 

 Step Type:  End Script 

 Remark:    All done or quit from unresolvable error 

Summary 

This logic would be very much like the required logic in a system that would use email data transfers 

instead of FTP.  Additions to it could be used to flag communications status to tags in the Corsair 

program.  Those tags could be used for the Corsair display. 

Additional logic may be required on the Corsair end to connect and disconnect a modem and verify that 

a modem is ready.  Timings will need to be consistent with what the modem can do. 

The solution that is outlined here is believed to be reliable enough for most purposes.  Any more 

reliability could involve some sort of data exchange with sequence numbers and an acknowledgement 

system.  It could quickly become too complex to be practical. 

 

Integration of a value over time 
Many processes use instrument that give rate data to a computer or PLC.  A flowmeter may send a 

measurement of water flow in gallons per minute.  A belt scale may send a measurement of rock flow in 

tons per hour.  These rate values can be displayed on a Corsair trend or data logged into a file.  Both 

trends and logs keep data at a sampling interval.  The interval may be 5 seconds for a flow that changes 

quickly or 1 hour for a flow that changes very slowly. 

Companies frequently have an interest in both flow rates and flow totals.  A gallons-per-minute water 

meter would have a flow total expressed in gallons.  A tons-per-hour belt scale would have a flow total 

expressed in tons.  The best way for a computer to get these flow totals is for the meter to send some 

sort of pulse signal to the PLC.  The water flow meter may send a pulse that lasts for one second after 

every 100 gallons of flow.  The computer counts the pulses and multiplies the count times 100 to get a 

total number of gallons. 



365 | P a g e  
 

Some flow measurement equipment may totalize the flow internally.  It may be possible for the PLC or 

Corsair computer to read this total through data communications.  This guarantees that the number 

shown on the operator interface screen will match the number shown on the front panel of the 

instrument.  It is difficult to keep both totals in exact agreement when pulse counting is used. 

The least accurate method of flow totalization is for the computer to do a mathematical integration on 

the rate signal.  If it sees 5 gallons per minute for a minute it adds 5 to the total.  If it sees 7 gallons per 

minute for the next minute it adds 7 to the total.  If the proper timings are used this integration of a rate 

signal is accurate enough for many purposes. 

The Corsair program has features that can be used for the integration of rate values. 

To be continued 

 

Corsair Amount Logging 

The CorsairHMI program can be used to log production totals to a database program that uses SQL 

(Structured Query Language).   These production totals may be the number of gallons of water that 

flowed through a wastewater treatment plant in a day, how much rock a quarry produced during a shift, 

or how much power a facility has used.  The database program is typically not running on the same 

computer as CorsairHMI.  It runs on a dedicated server computer which may be on the project site or 

may be somewhere in a remote data center (‘in the Cloud’). 

Conventional Totalization Logging  

Let’s assume that we are logging shift totals in a quarry.   The quarry has a fixed production schedule 

that has three 8-hour shifts – perhaps starting at 7 AM, 3 PM, and 11 PM.  If it has 10 belt scales a 

conventional approach might be to put 10 records into the SQL database each shift.  The record would 

include the start (or end) time of the shift, which scale it represents, and a total number of tons.  This 

would produce 30 records per day.  The advantage of this technique is that it doesn’t require much 

space on the database server hard drive.  It also is easy to interpret the record.  Finding the Scale #2 

production total for third shift last Thursday involves looking for a single record. 

Conventional logging has some serious problems.  The server hard drive space issue isn’t really an issue 

at all with today’s drives so it can be dropped from consideration.  A real problem is that the totals have 

lost the ‘granularity’ of the data.  They do not reflect when the rock was produced – was it early in the 

shift or late?  If the plant was down for half of the shift was it 7 to 11 or 11 to 3?  An even more serious 

problem is what happens when production schedules change.  Suppose the site manager changes the 

workweek from 5 8-hour days to 4 10-hour days or 3 12’s.  Weekends may run different shifts than 

during the week.  The database logging must be changed each time the schedule changes.  The ‘old 

format’ database records do not compare well with the ‘new format’ database records.  It’s pretty hard 

to compare a year’s worth of data to see if more rock is produced before noon than after noon if there 

have been multiple shift changes during that time period. 



366 | P a g e  
 

An initial thought as to how to deal with the granularity problem is to log the production totals per hour 

rather than per shift.  It may take 8 times as many records but the shift change issue is largely solved.  

Hourly production records are more difficult to inspect for shift totals because each shift total could be a 

summation of the numbers of 8 (or more) records.  If the software tool that the user has to view the 

data takes this into account no extra work is required. 

Amount Logging 

CorsairHMI has another option for logging of production totals into an SQL database.  It is to create an 

event record every time a fixed amount of production has passed.  Let’s assume that our quarries belt 

scales produce a totalization pulse output every time a tenth of a ton of rock passes over the scale.  This 

pulse is hooked into a PLC that is tied to a Corsair interface.  Every time 100 pulses have been counted 

by the PLC Corsair generates an ‘Amount’ database record for the scale that has the number 10.0 in it.  

The PLC and the Corsair computer have no idea of what a shift is and they do not care. 

The software tool that views the data must know how to add up the numbers on these Amount records 

for the desired time interval(s).  The user can determine what time interval he wants to view years after 

the data has been logged – if he wants 8-hour shifts starting at 7:00 AM or before noon or any other 

interval.  The granularity of the data has not been destroyed by the logging process unless the user 

wants to resolve under 10 tons.  Amount records can be set for any desired quantity.  Smaller quantities 

for finer resolution will produce more records. 

Record amounts can be variable.  A record can be produced every 10 tons unless production is over 100 

tons per hour in which case a record is produced every 20 tons and there is to be a minimum of 1 record 

every 8 hours even on down days. 

CorsairHMI includes a reporting tool that can be used in many situations to summarize amount data.  

Commercially available SQL report generation programs can do the same thing. 

Database Server Considerations  

The first decision is whether data is to be stored locally or ‘in the cloud’. 

The first consideration is usually cost.  It may be asked why we would spend $300 per year to rent a 

computer somewhere else when we can stick a $600 tower in the back closet?  This is not a fair 

comparison.  That rental includes a server-grade computer worth a whole lot more than $600, the use of 

the database software, an MIS professional to keep it updated, backup services as desired, somebody to 

keep the dust cleaned out of the air intake, high reliability UPS and generator backup, the electricity to 

run it and the air conditioning, a locked and guarded facility, and somebody that you can yell at if it goes 

down.  If you have 3 plants that all use that same server $300 per year just turned into $100 per year per 

plant.  And you have one stop shopping for comparing production totals from different plants. 

Another consideration is security.  The first step is to take a realistic evaluation of the risk of sharing 

production data.  Is a ‘hacker’ likely to waste his time trying to figure out how many gallons of water ran 



367 | P a g e  
 

through your sewer plant last January?  Is it tragic if he does?  The second step is to evaluate what is 

really more secure.  As long as there is an Internet connection somewhere that computer in your back 

closet may be no more secure than the one at the data center.  Closet computers at manufacturing 

facilities are typically not current with security updates.  Data centers employ MIS professionals whose 

whole career depends upon the security of the data in their facility.  They obsess on this stuff so that 

you don’t have to because they get fired if the data is stolen.  The cloud option may be more secure 

than the closet computer. 

The next consideration is hardware lifetime and replacement. Reputable cloud providers have some sort 

of plan to make this happen.  Many closet computers are not replaced until they fail (and data is lost). 

It must be mentioned that part of the decision to use a cloud service is to make sure that you are dealing 

with a quality data center and not with a guy who is renting space on a computer that is in his closet.  It 

should be a data center whose services go beyond just hosting web sites. 

Technical Considerations for Amount Logging to a Cloud Server  

Cloud providers have different levels of server that you can use.  The most expensive is when you get a 

dedicated server.  There is one computer somewhere at the data center that is only used by you.  This 

option gives you the most flexibility.  If Amount data is being logged at a high rate a dedicated server 

may be a good choice.  The cloud provider tech support people can assist with this decision. 

A more common choice would be a virtual server where you share a computer with some other 

customers.  Most small company web sites do this.  It costs considerably less than a dedicated server but 

there are limits as to how quickly you can send data to it. 

CorsairHMI offers an option that can assist with logging data to a cloud server without causing 

bandwidth problems.  Rather than send an amount event into the database each time one occurs 

Corsair can write the SQL command into a text file.  The commands build up for some period of time – 

perhaps 10 minutes.  Then Corsair sends that file to the data center via FTP.  A script running on the 

server computer ‘plays’ the text file into the database. 

Corsair supports the concept of two Event databases – the ‘Log’ database and the ‘View’ database.  

Normally records go to the Log database and the operator looks at the ‘View’ database.  Most systems 

have both set to identical destinations. 

The ‘log’ database can be set up to write SQL Insert instructions to a text file instead of directly to the 

SQL server.  Corsair scripting can then be used to periodically push that file to the cloud server.  The 

mechanism to do this is described in detail in a separate document that is available for download from 

the CorsairHMI website. 

The ‘view’ database can then be set up to view the cloud data via normal SQL queries.  As long as the 

user is looking at data that is over 10 minutes old the data will be available. 



368 | P a g e  
 

Communications Architectures 
The communications architecture for a system is a ‘one-line’ diagram of data communication paths.  

Corsair contains a feature that is used to generate a printed report documenting the architecture.  This 

printout is used for design review, for assistance with installation and configuring equipment, and for 

system documentation. 

The printout consists of boxes that are connected with lines.  The lines can represent Ethernet networks 

or serial data communications.  Each box shows its IP addresses.  The developer can enter up to three 

comments for each box. 

The boxes that appear on the architecture printout can correspond to Corsair session, driver, and data 

source records.  Some drivers will show additional boxes corresponding to specialized items like 

intercom stations and video cameras. 

Corsair architectures can feature up to 3 Ethernet networks.  The ‘PLC’ network is the network that is 

used for the interface computers to talk to PLC processors.  The ‘MIS’ network is used for MBHR 

communications.  The ‘Other’ network is used for other purposes.  

The developer can enter Ethernet Object records into the Corsair database for documentation purposes.  

They will appear on the architecture printout. 

The developer can enter 3 separate Ethernet addresses into data records that appear on the printout.  If 

an entered address is set to 0.0.0.0 Corsair assumes that there is no connection.  If the address is set to 

255.255.255.255 the address shows as ‘Auto’.  Other values show as a valid IP address. 

Architecture printout pages are segregated into numbered sections called ‘locations’.  If a record has 

zero for its location number it will not appear on the printout. The lowest nonzero location is printed 

first followed by the other locations in numerical order. 

The Edit/Paths/Locations menu option enables the developer to enter descriptive names and comments 

for each location.  They will appear on the upper-right corner of the architecture printout. 

Some records have the possibility of entering a sequence number as well as a location number.  This 

sequence number is used by the Corsair computer to  determine the order the records appear on the 

printout. 

CorsairHMI Experts 
  



369 | P a g e  
 

  



370 | P a g e  
 

 
 

Corsair Experts 
Corsair experts are sections of the program with several purposes.  Some Experts are view-only windows 

that monitor the operation of the Corsair program.  Some are used to investigate, monitor, and 

configure external data paths.  Some can be used to configure other equipment.  Some are used to 

automatically generate portions of a Corsair application database.  The purpose of many of the experts 

is to aid in telephone support of an installation.  The operators can see the status of many things in a 

safe way that does not enable them to disrupt the system. 

Many of the functions that are performed by the experts are available with other programs.  The Corsair 

advantage is that they are all available within the Corsair development environment.  They are 

integrated with the Model file.  They are optimized for what the Corsair developer needs and frequently 

easier to use than separate programs.   The developer does not need to pay for, download, or install 

separate utility programs.  Most of the experts are available with either a Windows or a Linux Corsair 

program. 

Many of the experts are opened from the Corsair main menu ‘Tools’’Experts’ option. 

 

The experts that appear on this window depend upon the build and license options that are present on 

the system. 

The Data Source Address Tree 
The Corsair program generates a listing of data source addresses in a tree structure.  This data can be 

viewed by the developer as a tree control in a window.  It can also be printed out.  The resulting 

document can be the basis for coordination of addresses between the Corsair developer and the PLC 

programmer. 



371 | P a g e  
 

Time Zone Monitor 
The Time Zone monitor window is a view-only window.  It gives the operator and developer information 

about the computer’s clock and calendar.  It can be used to verify that the computer is set up for the 

correct time zone.  The Corsair program cannot be used to directly change the computer clock or time 

zone. 

CSV data log files frequently contain date and time values for each record in the log.  Responsible 

developers will use GMT time for logged data.  This means if someone is viewing the log through the CSV 

file viewer or through a spreadsheet program the times in the log records will not be the local time at 

the computer.  This window can help the operator to determine how many hours to add or subtract 

from the records time to get the corresponding local time.  Remember that this value changes with 

daylight saving time. 

 

 

The Program Started time shows when the Corsair program started running.  The Interface time shows 

when Interface operation began or ended. 

Database Generation 
 



372 | P a g e  
 

To be determined 

The Application Database Error Summary 
The Corsair program runs a background task called the ‘thinker’ that constantly analyzes the database. 

One of the tasks that the thinker performs is checking the database for errors. Each possible error 

condition has an error code number. 

All possible error code numbers are shown with some description by picking Help/Program 

Information/Error Codes from the main menu. Using the up and down arrow and page up and down 

keys it is possible to scroll through the list of codes. The list may be printed out when the Corsair 

program is used to print a manual. 

Error code numbers are divided into ranges of values. Each range has a name. Each range serves a 

different purpose. The thinker uses 4 ranges of error codes: 

1000-2999 Advice 
3000-4999 Alert 
5000-6999 Warning 
7000-8999 System 
 

 
 
A summary of the current results from the thinker’s error checking is shown from the main menu with 

View/Error Summary. System errors are shown on this window. They are errors that apply to the setup 

of the computer or to deficiencies in the database. 

Advice, Alert, and Warning errors are applied to individual fields in the development databases. If a field 

has an error it will be shown in color. The color corresponds to the range of the error. When the 



373 | P a g e  
 

developer clicks on the field the description of the error appears in the status bar on the bottom of the 

window. Clicking on the status bar causes a more complete description of the error to appear. 

Warning errors are the most severe. Advice errors are the least severe. The recommended Corsair 

project procedure is to have all warnings fixed before startup. All Alerts should be cleared before leaving 

the database with a customer. All advice items should be evaluated before the project is closed out. 

The computer can move through the databases from error to error using Control-N to go to the next 

error and Control-L to go backwards to the previous error. This error search can be reset to the 

beginning from the main menu by View/Reset Error Search. 

There are other ranges of error codes. 

9000-9999 Disk 
10000-11999 Winsock 
12000-12999 Memory 
13000-14999 Comms 
15000-16999 Notice 
59000-60999 Entry 
61000-62999 Application 
63000-64999 Corrupt Memory 
 
Disk errors are concerned with disk file operations. Winsock errors apply to the operation of the 

computer’s TCP/IP communications software. Memory errors deal with computer memory allocation. 

Comms errors apply to various problems with communications. Notices are codes to guide the 

developer in his work. Entry errors spot when data entered into a field is not acceptable. Application 

errors indicate faults in the Corsair program. Corrupt memory errors indicate problems with the Corsair 

application database. 

The MBHR Host Monitoring Window 
When the Corsair program acts as a host for the MBHR remote access system up to 100 computers can 

act as remotes.  The Host Monitoring window shows what remotes are hooked into the host, their IP 

addresses, their network names, and how long they have been connected.  The information can be 

printed. 

 

The Communications Architecture Printout 
The Architecture printout is a chapter of the Corsair application manual that can be printed from the 

Corsair computer.  This printout shows configuration information about the communication networks 

that are shown in the Corsair database.  One of its uses in in the submittal process when seeking an 

engineer’s approval of a design before ordering equipment. 



374 | P a g e  
 

The Email Status Window 
The email status window shows diagnostic information about the email system and provides a way to 

test it. 

 

The window shows information about the last 4 messages.  It provides controls at the bottom to send 

small test messages.  The recipient’s address is entered with ‘SMTP:’ in front of it.  There is a place to 

enter the subject and one line of message text.  

The Data Source Diagnostics Window 
This window monitors the status of the communications to all connected data sources.  It shows the 

connection status and time.  It shows the total of good and bad reads and writes and the last time of 

each.  It shows the last read and write error code. 

The HTTP (Web) Host Window 
This Window displays the status of the HTTP server system. 



375 | P a g e  
 

 

It shows the login mode as entered into the Web Host group of the computer configuration.  The status 

line shows if the server started successfully.  The error button can be used to display any HTTP server 

errors. 

When a browser hooks into Corsair it shows in the ‘Logging In’ count.    If the viewer logs in he moves to 

the ‘Active’ count.  A short time delay after the browser session is closed the count moves to ‘Expired’. 

 

The Sound Monitor Window 
The Corsair system can produce sounds from Wave files in response to alarms.  This window displays the 

contents of the queue of sounds and enables testing of the sound system. 

Communications Trace 
Corsair communicates with several types of devices over serial port and Ethernet connections.  It uses 

different protocols that send different types of data packets.  The communications trace expert is used 

by advanced developers to see what the Corsair program is transmitting and receiving.  The trace is 

available for most driver types but not for Ethernet MBHR communications.  It allows the developer to 

analyze the communications traffic for Modbus function codes and exceptions, data length and byte-

ordering problems, and many other things.  This expert features packet analysis for some 

communications protocols.  Packet analysis means that labels appear on the trace window to explain the 

meaning of different parts of the data packet. 

 



376 | P a g e  
 

 

The trace is started using the Comms Trace window.  It is accessed from the main menu from Tools/ 

Comms Trace.  After the trace is enabled the window can be closed and the trace will continue.  Opening 

the window again will show the trace result as a collection of items. 

Trace items are of two types – headers and data.  A header may mark an event like the establishment of 

a TCP/IP connection.  More commonly a header marks the start of a data packet.  A data packet is a 

group of 1-byte characters.  Transmit data packets show data that is transmitted from the Corsair 

computer to another device.  Receive data packets show data that was transmitted from another device 

to the Corsair computer.  Most types of headers show the count of characters that is in the packet.  The 

characters in a packet are labeled with T or R followed by a number.  The number is the position of the 

character in the packet.  T[0] is the first character of a transmit packet.  R[2] is the third character of a 

receive packet. 

The value of each character is shown as a hexadecimal number with a 0x prefix.  The View menu 

selections contain an option to change the display to decimal.  An ASCII interpretation of the value is 

shown.  If the value is hex 0x41 it is also decimal 65 and the ASCII for an upper case letter ‘A’. 

The header will often tell what communications protocol is being used for the packet.  For some 

protocols Corsair can display comments about what some of the packets characters mean. 



377 | P a g e  
 

To start the communications trace the operator must first select if the source is Ethernet or a serial port.  

Ethernet traces show all Ethernet activities from all drivers.  It may be necessary to set some data 

sources to be Not Real to reduce the data on an Ethernet communications trace. 

A serial port trace can be on any serial port from 1 through 100. 

After the operator selects the source of the trace clicking on the ‘Start’ button will start trace operation.  

The ‘Pause’ button can be used to stop the data collection without stopping communications.  The 

‘Clear’ menu option is used to clear out the trace data. 

The trace memory buffer is large enough to hold several thousand headers and characters.  Usually it 

fills up and the older items are lost as newer items are added. 

The ‘Collect’ menu selections are used to control options for how the trace collects data.  It includes a 

‘Quit if Full’ option.  When ‘Quit if Full’ is checked the trace will operate until it is full and then pause 

automatically.  The operator must then clear the trace buffer before it can be started again. 

The communications trace can accumulate a large amount of data in a short time, especially with 

Ethernet communication.  By default it collects Transmit Headers, Transmit Data, Receive Headers, and 

Receive Data.   Collect menu options allow these items to be selectively shut off.  Data must have 

headers so it is not possible to have Transmit Data on and Transmit Headers off. 

Another collection control option is the Header Filter.  It can reject all headers that do not match a 

particular header type.  As an example, assume that a developer is setting up communications between 

a GPS receiver and a Corsair computer.  He goes to the Data Source Register Monitoring window to see a 

summary of the GPS sentence types that he is receiving.  It shows him that he is receiving some 

unrecognized GPS sentences.  These are sentences whose type is not recognized by the Corsair program.  

He can go to the comms trace window, set the filter on the bottom of the screen to ‘Unrecognized GPS 

Sentence’, and turn on the ‘Use Header Filter’ option on the Collect menu.  He can then clear the buffer.  

It will fill with just the unrecognized sentences. 

When the trace is paused trace data can be output to a printer. 

Comms trace settings are not retained when the Corsair program is stopped. 

The comms trace window can be a powerful tool to use when starting up Corsair interface systems, 

especially with serial-port drivers. 

TCP Expert 
The TCP expert is used with Ethernet networked systems.  It can learn about what devices are on a 

network and make some configuration changes in those devices.  



378 | P a g e  
 

 

The window has several buttons to select different options.  There is an edit box near the bottom that 

can be used to enter a 4-part IP address.  This address is used as a starting point for the functions on the 

other buttons.  Two buttons can be used to assist in entering IP values for this edit box.  The left-side 

one is labeled ‘IP List’.  It opens a pick list of IP addresses based upon records in the currently selected 

Corsair model.  The right-side button is labeled ‘Computer IP’.  It opens a pick list of IP addresses from 

the computer that the Corsair program is running on. 

Ping Scan 
When a nonzero IP address has been entered the ‘Ping  Scan’  button appears.  It opens a window that 

examines the network to see what addresses exist.  It scans the 254 addresses from the entered address 

with a 1 at the end through the entered address with a 254 at the end. 



379 | P a g e  
 

 

The scan window does a Ping to locate devices.  Computers will not appear on it if they are firewalled to 

not respond to pings.  Successful pings will show up with a number in orange.  Corsair tries several pings 

at one time.  Active pings are shown with a line underneath the number.  After Corsair gets a successful 

ping to an address it tries to fetch a network name.  It only ties one network name at a time as shown by 

a line above the number.  If it gets a network name the number is shown in green.  Typically computers 

show in green and PLCs show in orange. 

The scan window can be printed so that the printout can be compared to scan results at a later date.  

This serves as a check for devices that are missing from the network. 

Bootp 
The Corsair program contains a TCP expert utility.  One of the functions that it can perform is a BootP 

server.  BootP is a way to load an IP address into a piece of equipment so that it can communicate on a 

TCP/IP Ethernet network. 

 



380 | P a g e  
 

For the BootP server to work with a Corsair program on a Windows machine it may be necessary to turn 

a network firewall off.  The program will have to be started in a Windows Administrator mode.  This is 

typically a property of the shortcut that starts the Corsair program. 

The development level of the Corsair program must also be set to ‘Admin’ for the BootP server to work.  

It should say “Dev: Admin” on the status bar of the Corsair desktop.  The ‘Users – Change Levels’ menu 

option is for setting this level. 

Corsair supports two methods to serve out BootP addresses.  The first is ‘Requested’ BootP.  The device 

requests an address and Corsair replies with one.  Most devices use this method.  The second method is 

‘Transmit’ BootP.  Corsair repeatedly sends out a BootP reply to the device even though it has not 

explicitly requested one.  With either method the Corsair program needs to know the 6-part Ethernet 

MAC address of the device.  Most of the time that address consists of 6 two-digit hexadecimal numbers 

separated by colons.  Frequently it is on a label somewhere on the device.  In some cases Corsair may be 

able to discover what this address is if the label is not available. 

 

Procedures 
 

Situations differ in how the Corsair BootP server has to be used.  The following list contains standardized 

procedures that have been developed for using it to load addresses into equipment.  A separate manual 

named ‘CorsairHMI Application Notes’ recommends which of these procedures to use for some different 

situations. 

The Corsair BootP server may be unusable in some situations where the final subnet mask of the device 

needs to be something other than 255.255.255.0.  The procedures written here assume that the initial 

and final IP addresses of the device are on the same subnet as the Corsair computer.  That usually 

means that the first 3 numbers of the IP address agree.  The procedures may have to be modified if the 

initial and final IP addresses are on different subnets.  For instance, if changing an IP from 

192.168.141.12 to 192.168.1.7 the network adapter address of the Corsair computer may need to be 

changed at least once between the 192.168.141.# to 192.168.1.# subnets. 

 

Procedure 'A' 

 

Step 1:  Your Corsair license must have the ‘CIP Expert’ option.  This is verified from the ‘Help – View 

License’ menu selection.  Go to the ‘Options’ tab and verify that ‘CIP Expert’ is checked. 

Step 2: Pick the ‘Tools – TCP Expert’ menu selection.  Hit the ‘Protocol’ button.  Select the ‘EtherIP’ radio 

button option. 

Step 3:  Hit the ‘Computer IP’ button.  The IP selector will show the addresses of adapters that are on 

your computer.  Select one that is compatible with the initial address that is presently on the 

equipment. 



381 | P a g e  
 

 

Step 4:  Hit the ‘Ping Scan’ button.  Wait for the scan to complete and show ‘254 done’.  It may take two 

cycles for all the addresses to appear.  Addresses that are in use will show with an orange or green color. 

Step 5:  Verify that the current ‘intial’ IP address of the device before the change is shown on the scan 

with a MAC address.  If it is not shown the situation will have to be investigated.  Perhaps Procedure ‘B’ 

will need to be used.  Verify that the MAC address that is shown matches the one labeled on the device. 

Step 6:  Verify that the target ‘final’ IP address that is desired for the device is not shown on the Ping 

Scan.  If it is there is a device that needs to be removed from the network or you need to use a different 

Final IP.   

Step 7:  Pick the ‘View – Requested BootP’ menu selection.  Two lists will appear.  The Requests list is on 

the top and the Relations list is on the bottom.  Your device should be showing with its MAC address and 

initial IP in the Relations list.  Other devices may also be in the list.  You may click on them and use the 

delete button to remove them from the relations list if you wish.  Corsair will not serve out IP addresses 

to relations that do not have an entered final address. 

Step 8:  Select the desired device in the relations list.  Click on ‘Edit’ and enter the desired final IP 

address.  The ‘Final IP’ button may be used to pick addresses from the Corsair database if desired.  The 

bottom edit box may show if the final address is unreachable by the computer.  This serves as a warning 

that the entered address may be wrong or an adapter setting may need to be changed on the computer 

later in the procedure. 

Step 9:  If desired, clear any requests from the requests list. 

Step 10:  Use the button to turn BootP on.  Cycle the power by either interrupting the power to the 

device or by picking ‘Power Cycle’ from the menu.  Wait for the MAC address to appear in the Requests 

window.  It may take more than one request before the IP address appears in the Requests window.  

The requests from that device should stop. 

Step 11:  Use the button to turn BootP off.  Cycle the power by interrupting power to the device or 

picking ‘Power Cycle’ from the menu.  Close the BootP window. 

Step 12:  The procedure is done when the final IP address appears in the ping scan showing the correct 

MAC address.  It may take a few ping scan cycles for this to happen. 

 

Procedure 'B' 

 

Step 1:  Your Corsair license must have the ‘CIP Expert’ option.  This is verified from the ‘Help – View 

License’ menu selection.  Go to the ‘Options’ tab and verify that ‘CIP Expert’ is checked. 

Step 2: Pick the ‘Tools – TCP Expert’ menu selection.  Hit the ‘Protocol’ button.  Select the ‘EtherIP’ radio 

button option. 



382 | P a g e  
 

Step 3:  Hit the ‘Computer IP’ button.  The IP selector will show the addresses of adapters that are on 

your computer.  Select one that is compatible with the final address that is desired for the equipment. 

Step 4:  Hit the ‘Ping Scan’ button.  Wait for the scan to complete and show ‘254 done’.  It may take two 

cycles for all the addresses to appear.  Addresses that are in use will show with an orange or green color. 

Step 5:  Verify that the target ‘final’ IP address that is desired for the device is not shown on the Ping 

Scan.  If it is there is a device that needs to be removed from the network or you need to use a different 

Final IP. 

Step 6:  Pick the ‘View – Requested BootP’ menu selection.  Two lists will appear.  The Requests list is on 

the top and the Relations list is on the bottom.  Requests should be coming into the top list.  Select a 

request that matches the MAC address of your device.  Click on ‘Add to List’ to place your MAC in the 

relations list. 

Step 7:  Select your MAC in the relations list.  If there are other entries in the list they can be deleted.  

Corsair will not serve out IP addresses to relations that do not have an entered final address. 

Step 8:  If desired, clear any requests from the requests list. 

Step 9:  Click on ‘Edit’ to enter a final IP in the relations list item.  An initial IP is not needed.  The ‘Final 

IP’ button may be used to pick addresses from the Corsair database if desired.  The bottom edit box may 

show if the final address is unreachable by the computer.  This serves as a warning that the entered 

address may be wrong or an adapter setting may need to be changed on the computer later in the 

procedure. 

Step 10:  Wait for the MAC address to appear in the Requests window.  It may take more than one 

request before the IP address appears in the Requests window.  The requests from that device should 

stop.  Requests from other devices may continue.  They can be ignored. 

Step 11:  Use the button to turn BootP off.  Cycle the power by interrupting power to the device or 

picking ‘Power Cycle’ from the menu.  Close the BootP window. 

Step 12:  The procedure is done when the final IP address appears in the ping scan showing the correct 

MAC address.  It may take a few ping scan cycles for this to happen. 

 

Procedure ‘C’ 

 

Step 1: Pick the ‘Tools – TCP Expert’ menu selection.  Hit the ‘Protocol’ button.  Select the ‘No Specifc 

Protocol’ radio button option. 

Step 2:  Hit the ‘Computer IP’ button.  The IP selector will show the addresses of adapters that are on 

your computer.  Select one that is compatible with the initial address that is loaded into your 

equipment. 



383 | P a g e  
 

 

Step 3:  Hit the ‘Ping Scan’ button.  Wait for the scan to complete and show ‘254 done’.  It may take two 

cycles for all the addresses to appear.  Addresses that are in use will show with an orange or green color. 

Step 4:  Verify that the target ‘final’ IP address that is desired for the device is not shown on the Ping 

Scan.  If it is there is a device that needs to be removed from the network or you need to use a different 

Final IP. 

Step 5:  Click on the IP address that corresponds to the initial (current) IP address that is loaded into the 

device.  It should show a MAC address on the bottom of the window.  Verify that it matches the MAC 

address that is labeled on the device. 

Step 6: Pick the ‘View – Transmit BootP’ menu option.  The window should appear initialized with your 

device’s MAC address and current IP address.  Change the IP address to the desired Final IP.  A button is 

available to help you select an address from the Corsair database if desired. 

Step 7:  Click on ‘Start’ so that Corsair will start to send BootP messages.  Shut off the power feeding 

your device.  After a short time turn the power back on again.  Do not close the BootP window.  Move it 

so that you may see the desired final IP address on the ping scan window.   

Step 8:  As soon as the desired final IP address is shown on the ping scan window you may close the 

Corsair TCP expert.  Do not cycle power to the device before loading a program into it using the 

manufacturer’s programming software. 

 

Procedure ‘D’ 
 

Step 1: Pick the ‘Tools – TCP Expert’ menu selection.  Hit the ‘Protocol’ button.  Select the ‘No Specifc 

Protocol’ radio button option. 

Step 2:  Hit the ‘Computer IP’ button.  The IP selector will show the addresses of adapters that are on 

your computer.  Select one that is compatible with the final address that is desired for your equipment. 

Step 3:  Hit the ‘Ping Scan’ button.  Wait for the scan to complete and show ‘254 done’.  It may take two 

cycles for all the addresses to appear.  Addresses that are in use will show with an orange or green color. 

Step 4:  Verify that the target ‘final’ IP address that is desired for the device is not shown on the Ping 

Scan.  If it is there is a device that needs to be removed from the network or you need to use a different 

Final IP. 

Step 5:  Click on the IP address that corresponds to the final (current) IP address that is desired for the 

device. 

 



384 | P a g e  
 

Step 6: Pick the ‘View – Transmit BootP’ menu option.  The window should appear initialized with the 

final IP address.  Determine the devices MAC address from the label that is on it.  Type it into the 

window. 

Step 7:  Click on ‘Start’ so that Corsair will start to send BootP messages.  Shut off the power feeding 

your device.  After a short time turn the power back on again.  Do not close the BootP window.  Move it 

so that you may see the desired final IP address on the ping scan window.   

Step 8:  As soon as the desired final IP address is shown on the ping scan window you may close the 

Corsair TCP expert.  Do not cycle power to the device before loading a program into it using the 

manufacturer’s programming software. 

 

Adapter Summary 

 

The adapter summary window provides a listing of all the adapters that are present on a computer, their 

status, and their assigned IP addresses.  This window is helpful with diagnosing IP address and subnet 

issues.  It also provides a way to discover adapter ‘friendly’ names to use for the Adapter Status program 

block. 

Scan Open Ports 
When a nonzero IP address has been entered the ‘Scan Open Ports’  button appears.  It opens a window 

that scans that IP address to see what TCP ports it has open. 



385 | P a g e  
 

 

The ‘View’ ‘Known Ports’ menu option opens a window listing port numbers that are known to Corsair.  

There are far more known ports than what is listed here.  These ports are numbers that are of interest 

for industrial control work.  A subset of these ports is marked as ‘Common’.  The scanner gives the 

option of scanning for Corsair’s Common ports, for Corsair’s Known ports, or for a range of port 

numbers.  The range can be as large as from 1 to 65535.  Scanning for a large number of ports can be a 

very slow process. 

My IP 
The My IP Expert is used to see if a web address can be used to determine the Internet address of the 

Corsair computer.  The developer types in a URL address of a service that provides IP information. 

 



386 | P a g e  
 

After the address is entered the ‘Go’ button is used to try the read.  If successful the window shows the 

IP address of the service and the address on the Internet for the Corsair computer.  This address may 

change periodically depending on the Internet Service Provider and what plan options have been 

purchased.  

Suggested URLs for the service to get the IP address include: 

 checkip.amazonaws.com 

 whatismyip.akamai.com 

Other services are possible.  This expert window gives the developer an opportunity to test them.  

Successful addresses can be used on the Web tab of the computer properties for automatic My IP 

operation. 

ASCII Experts 
ASCII stands for American Standard Code for Information Interchange.  It is a system for storing letters 

and words in computer memory.  Corsair’s ASCII expert functions are used as aids for doing ASCII 

communications programming work.  These include an ASCII character table and window to assist with 

translating between ASCII strings and PLC register data using different encodings. 

The SQL Expert 
Structured Query Language (SQL) is a standard for other computer programs to communicate with 

database programs.  Corsair programs with the SQL license option can work with SQL-compatible 

databases.  The expert is used to setup and verify database connections.   The Corsair developer can 

verify an SQL connection, see if a database exists, create and delete databases, tables, and columns, and 

view database rows.  It performs some of the functions of simple SQL management console. 

 



387 | P a g e  
 

The SQL Clocks Window 
This window displays a time that comes from a remote SQL database engine computer.  It also shows 

the time from the local Corsair computer.  The time can be downloaded to the Corsair computer 

manually or automatically at regular intervals. 

 

The FTP Expert 
The function of the FTP expert is to aid the developer in setting the Corsair program to do FTP file 

transfers.  It can then be used to verify FTP communications during system commissioning. 

The Corsair program can act as an FTP client and not as an FTP server.  This means that it can initiate FTP 

communication to a server.  Another computer program acting as an FTP client cannot initiate 

communication to the Corsair program. 

The FTP expert is only available when the development level is set to Administrator.  It is access from 

the main Corsair menu through the Tools / Experts option. 

 

 

 



388 | P a g e  
 

The top section of the expert window had edit controls for editing the FTP server data.  The name of the 

server is the first thing to be entered.  The next is the port number that is to be used.   Normally the 

entered port number is left at zero.  Corsair will then use the default port value for the FTP protocol.  

Port numbers should be entered in decimal and not in hexadecimal. 

The window defaults to an Anonymous log-in.  If Anonymous is not checked a user name and password 

will have to be entered.  When the server data is ready a ‘Connect’ button on the upper right side of the 

window will be available to access the server.  If it cannot connect a button on the lower left will show 

an error code.  If it connects successfully the button on the upper right can be used to disconnect.  The 

window also disconnects automatically when it is closed. 

When Corsair is connected to the server the contents of the current FTP directory are shown on a tree 

control on the left side of the expert window.  Clicking on an item enables display of data about it on the 

right side. 

The lower part of the expert window contains a selector that is used to set an action.    Below the action 

selector is an entry field that is used to set up the action.  When an action is ready to be executed the 

button to the right of the action selector changes to ‘Do It’.  Clicking on it executes the action. 

Action Type:  ?? 

Two question marks is the undefined type when the developer has not selected an action yet. 

Action Type:  Download File 

Downloading a file is the process of copying a file from the FTP server to the Corsair computer. 

Action Type:  Rename File or Directory 

Action Type:  Upload File 

Uploading a file is the process of copying a file from the Corsair computer to the FTP server.  The entry 

field is for the name of the file that is to be uploaded.  A Browse button is provided to assist in finding 

this file. 

Action Type:  Check if a file exists 

Action Type:  Change Directory 

Action Type:  Create Directory 

Action Type:  Remove Directory 

 



389 | P a g e  
 

Task Summary 
The task summary is used by the operator or the Corsair developer to see what tasks are running on the 

computer’s operating system.   The advantage over the systems Task Manager is that operators can see 

the tasks in phone support situations without being able to control them. 

 

 

Text File Viewer 
Text files are files on the hard drive of a computer that contain information that can be read by a human 

operator.  The Corsair Text File Viewer is a read-only viewer that can be used to see what is in the file 

without allowing the operator to make any changes in the file.  In this way it is more secure than 

programs like a word processor or other programs that come with the computer’s operating system. 

CSV File Viewer 
CSV (comma-separated-value) files are a specific type of text file.  They contain lines that correspond to 

data records.  Each line consists of fields that are separated by commas.  The fields may be within 

quotation marks.  These files may be viewed with the Corsair Text File Viewer but that viewer does not 

understand the format of a CSV file.  A spreadsheet program can open and change CSV files.  The Corsair 

CSV file viewer allows operators to look at the data in a CSV file without permitting them to change it.  

This is important if the data is a history of process performance. 



390 | P a g e  
 

Telnet 
The Telnet protocol is an older method to hook computers into other devices over a network.  Telnet 

Client programs may not be found in the factory configuration of some computers.  Corsair contains a 

light version of Telnet that is adequate for many purposes.  It can be used as a tool to analyze 

connections that use the HTTP protocol.  It can receive and parse JSON data that is sent via HTTP. 

Opening a Telnet connection to a device requires specifying an IP address and a port number.  Corsair 

defaults to the normal port value of 23.  Devices that use HTTP typically use port 80.  Other port 

numbers can be entered. 

 

When an IP and port care entered the developer can go onto the Telnet window. 

 

 

The ‘Online’ and ‘Offline’ menu options are to establish and shut down the TCP connection.  The ‘Clear’ 

option is used to erase what is shown on the window.  The characters that are typed from the computer 

keyboard are shown in red.  The reply from the other device is shown in black. 



391 | P a g e  
 

It is possible to type in complete HTTP requests using this system but it is not easy as everything has to 

be entered perfectly or the request fails.  One answer to this problem is the use of Telnet ‘Inserts’.  An 

insert is a series of characters that the developer enters into one of the 5 possible Inserts.  Each insert 

can have a name.  The ‘Edit’’Inserts’ menu option shows the names of the 5 inserts. 

 

The button on the left permits editing of the insert. 

 

The name and description of the insert are entered here.  The edit button permits entry of multiple lines 

of text in the insert.  After an insert has been entered the developer can go back to the telnet window 

and pick the desired insert from the ‘Inserts’’Trigger #’ menu options.  Corsair will send the text of the 

insert just as if it has been typed in from the keyboard. 

Inserts can be used to send complete HTTP requests but the developer must have a very complete 

understanding of the protocol and any encodings that are needed.  It is much easier to use one of the 5 

available ‘Sets’.  They are shown with the ‘Edit’’Sets’ menu option. 



392 | P a g e  
 

 

The button on the left permits editing of the set. 

 

Sets are specially designed for the HTTP protocol.  Several windows specify standard and nonstandard 

options for the set’s HTTP request. 

 

The ‘View’ button lets the developer preview what the set will send. 

 



393 | P a g e  
 

 

An insert may serve as the content portion of an HTTP request specified in a set. 

 

It is possible to transfer (copy) the contents of one insert to another, from one set to another, or the 

results of a set to an insert for further modification. 

 

It is not possible to transfer an Insert to a Set. 

The ‘Print Configuration’ menu option prints the current Telnet configuration including inserts and sets.  

The Telnet configuration can be saved to a disk file and loaded from a disk file.  

When the Telnet window receives a stream of data it shows it in black.  The ‘HTTP Packet’ menu option 

shows the results of Corsair’s attempt to interpret this as an HTTP packet.  If the data in the reply is 

formatted in JSON the ‘JSON Expert’ menu option opens the JSON expert and offers a JSON 

interpretation of the packet.  Data read in this way is limited by the size of the Telnet receive data 

buffer.  Longer JSON replies can be retrieved using an option on the JSON Expert window. 



394 | P a g e  
 

Network Scan 
Corsair’s network scan function is used to provide a maintenance and diagnostic interface for many 

devices on an Ethernet network.  After a small amount of development work is complete it runs 

continuously in the background determining what devices are present and what their capabilities are.  

The goal of the function is to have as much capability as possible with as little development time as 

possible.  The scanner presents its results in a tree control.  When devices are added or taken away from 

the network the tree control updates automatically. 

The first step to configure the network scanner starts with the ‘Edit’’Data’’Drivers’ menu option.  A 

driver record must be created.  It gets the ‘Net Scan - Network Scanning’ driver type.  Zooming on the 

‘PLCs’ Zoom field opens a local view of the Data Sources that are on the driver.  A data source must be 

created.  A typical name for it would be ‘Net Scan Data Source’.  

Each network scan data source can scan the 254 addresses in a subnet.  To scan from 192.168.1.1 to 

192.168.1.254 any address in that range must be entered in the IP address column on the data source.  

The data source Real field should be set to ‘Yes’.  Pressing ‘F7’ or ‘Z’ on the data source record opens the 

special data editing that is needed for a source on this driver. 

 

A file name must be specified to store the results of the scan.  ‘C:\corsair\net_scan_results’ is 

recommended for the name.  A delete time must be entered if the scan is to automatically remove 

deleted items from the tree.  Other entries are used to determine what types of things the Corsair 

computer will scan for.  Turning off unneeded items will speed up the scanning activity. 



395 | P a g e  
 

The delete time is used for Corsair’s ‘three strikes’ method.  When a device is sensed on the network 

Corsair marks that it has a good status and remembers the time.  Each time that it can’t read the device 

for more than the delete time it counts a strike.  The next count after the third strike means the device 

will be deleted from the list. 

Assume that the delete time is set for 10 minutes.  A device is sensed on July 3 at 5 PM.  The computer is 

shut down and not turned back on until August 4.  If it sees the device at that time Corsair remembers 

the good status.  If it does not see the device at that time Corsair marks it with one strike and 

remembers the time.  The timing for the second strike begins when the first strike happened, not when 

the last good communication occurred.  Strike timing is not extremely precise as the scanner has many 

things to do.  A missing device is guaranteed to not be deleted in less time than 4 times the entered 

delete time. 

The network scan’s tree control is normally accessed as a register monitor on the data source. 

 

Various monitor and control options appear as the ‘Open’ button on the bottom of the screen.  Checking 

the ’View’’History’ menu option changes the view to display the scanning status of the item including 

the three-strike system. 

The ‘Create’ menu section is used to create Corsair tags from network scan results.  Administrator 

Development must be turned on.  The program will not create a tag where one already exists. 



396 | P a g e  
 

The ‘All’ create option creates as many tags as Corsair can from the entire network scan tree data.  The 

‘Selected’ option only does a tag for the tree item that is currently selected.  The ‘Selected Family’ 

option creates for the item that is currently selected and for all the items that are under it. 

BACnet Explorer 
The BACnet Explorer subprogram is accessed through the TCP Expert function.  It is used to discover, 

monitor, and control devices on a BACnet IP building automation network.  Corsair talks BACnet IP 

through an Ethernet port.  This frequently goes to another device that translates to a serial 

communication standard like BACnet MS/TP. 

The network scan shows BACnet devices and their properties.  It shows objects under the device.  It 

shows properties under each object.  If the ‘Open’ button shows when a tree item is selected the button 

is used to open a window to control or monitor that item. 

The Door Pseudo-Code Printout 
This printout produces PLC pseudo-code that helps in the writing of PLC programs for corrections 

applications. 

PLC Register Monitoring 
The general PLC Register Monitoring window allows entry of a PLC register address.  The Corsair 

program then displays the data at that address or a set of consecutive addresses.  Several formats are 

available for the display.  This window also allows for register data entry.  Some communications drivers 

have specialized versions of the register monitoring window that are specific to that driver. 

Data Exports 
Corsair offers several types of data exports that produce CSV files for use with other software.  This 

includes a file of labels for door status bits that may be imported into PLC programming software. 

Maintenance Windows 
When an operator is viewing an interface screen he can place the cursor next to a graphic placement.  If 

he presses the ‘M’ ‘Maintenance’ key Corsair will show a development maintenance window associated 

with the placement if one is available. 

 



397 | P a g e  
 

 

This window shows the data source that the tag is under, it’s address, and other information.  The 

current value is shown at the bottom.  Other types of database records have different maintenance 

windows. 

The Tag Data Monitoring Window 
The data monitoring window shows the current values of tag data including all elements of the array 

and the addresses of each element. 

The Door Data Monitoring Window 
Corrections versions of the Corsair program offer a special window for monitoring the 16 data bits of a 

door. 



398 | P a g e  
 

 

The bits that are turned on are checked.  The F1 to F4 buttons can be used to operate the door. 

The DXF Expert Window 
Computer drafting programs can produce files in .DXF format.  Corsair can import portions of these 

drawings as Corsair graphic placements.  The DXF Expert window can be a great help in understanding 

DXF files.  It is explained in the ‘DXF Import’ section of the Developer manual. 

The JSON Expert Window 
Javascript Object Notation (JSON) is a way to format data as a stream of characters.  These characters 

may be in a text file or they may be transmitted through a network.  The window can be opened from 

the Experts menu or it can be opened from the Telnet window. 

 



399 | P a g e  
 

The window has a tree control on the left side and a text entry window on the right.  JSON data can be 

entered or pasted into the right side entry.  The ‘Left’’Generate’ menu option converts this to Corsair’s 

JSON tree data format and shows it on the left side tree control. (Future) The ‘Right’’Generate’ menu 

option translates the tree data into JSON text on the right.  Both sides have Clear and Print menu 

options. 

There are menu options to save the JSON tree data into a file and to load it back again.  Some Corsair 

drivers depend on properly formatted JSON tree data files.  These files can only be produced from the 

Corsair JSON expert. 

Sometimes a large amount of JSON data may need to be read into the expert.  This may be more that 

what can be handled directly from the Telnet window.  If the JSON expert is accessed from the Telnet 

window the  ‘Get Data’ menu options can fetch the data directly into the JSON tree.  This procedure 

bypasses the text entry window on the right side. 

Sometimes it is desired to ‘prune’ branches from the JSON tree before saving the tree file. Pruning can 

speed up tree data searches and simplify monitoring of tree data.  This is done with the specialized 

‘Delete’ functions. 

Suppose there is an array of objects.  Each object contains information about an individual. 

[ { “Name”:”Sam”, “Age”:27, “Married”:true,”City”:”Cleveland”}, 

 { “Name”:”Pete”, “Age”:32, “Married”:false,”City”:”Miami”}, 

{ “Name”:”Mary”, “Age”:64, “Married”:true,”City”:”Cleveland”}, 

{ “Name”:”Sue”, “Age”:27, “Married”:true,”City”:”St. Louis”}] 

The developer selects an item on the tree and presses the Delete key.  This opens up a window that give 

him options for his delete. 

 



400 | P a g e  
 

Suppose that the City record for Mary is selected.  It has a value of ‘Cleveland’.  If One Item is selected 

the City value is deleted from her record.  The rest of the Mary object stays there and the City 

information for the others is untouched. 

Deleting Similar objects in all Array Elements means that Corsair will delete the City value in every 

record that is in the array.  

Deleting All Array Elements with matching Items means that Corsair will delete all records where the 

City value is set to ‘Cleveland’.  Deleting All Elements with Items that do not match means Corsair will 

delete all records where the City value is not equal to ‘Cleveland’. 

 Protocol Data 
Corsair’s Help/Program Information menu option opens a window showing buttons to show and print 

information about the Corsair program.  The ‘Protocol Data’ button is used to open a window with 

information about communications protocols that are used by Corsair. 

 

Each of these buttons opens a row and column or a tree display of information about the protocol.  They 

can be used by the developer to learn about the protocol and to determine what Corsair knows about it. 

The Services Expert 
Windows services are programs that the operating system starts up and operates in the background 

without visible windows.  The operating system has a database listing programs that are configured to 

run as services.  The Corsair Services Expert is a window that can be used to list the records in the 

services database.  To use it the program must be run by a Windows administrator and the developer 

must be a Corsair administrator. 

 



401 | P a g e  
 

 

The tree control on the left side of the expert window shows the programs that are installed as services 

with their ‘display’ names.  The first item on the right side is the ‘service’ name.  The Status item shows 

if the service is stopped, running, or in some other state.  The Start Type item shows if the service will 

start automatically when the computer boots or if it must be started by an operator.  The final item 

shows where the program file is located and any parameters that are passed to it when it starts. 

Any version of the Windows Corsair program has the Services Expert window.  If the program has the 

‘Diagnostic’ build and license options the Expert can be used to control services.  It can change the 

startup type of a service and start and stop it.  It can create and delete entries from the services 

database.  This is an extremely powerful feature that must be used very carefully.  Accidental deletion of 

a critical service could make a computer unusable. 

The Expert can be used to create entries in the services database list.  One possibility for this is to run 

the Corsair program as a service.  The ‘Create’ menu option opens a way to do this. 



402 | P a g e  
 

 

The window opens with suggested values to install Corsair as a service.  The ‘Binary Path’ entry is an 

absolute path specification to the Corsair executable file.  One parameter that must be passed to the 

program is the word ‘service’ to configure how it is supposed to run.  Another parameter is the path to 

the computer configuration file that the service is to use.  Typically, this file tells Corsair to enable Web 

host operation. 

Some difficulties may arise when the Corsair service and a copy of Corsair running in a window are 

running at the same time using the same computer properties file.  Both cannot host web on the same 

port at the same time.  The best procedure it to use the window version to make a .cfg file for the 

service to use.  That file needs to be renamed to a different name than the default ‘corsair.cfg’.  That 

name should then be used in the parameter specification when the service is installed. 

CorsairHMI Corrections 
  



403 | P a g e  
 

 
 

Introduction 
 

The CorsairHMI program comes with a license file that determines what features of the program are 

available to an end user.  Corrections features are things that are used in computer systems for jails and 

prisons.  This manual is used to describe those features.  Some of them are available in any version of 

the Corsair program.  Some are available only if the customer has purchased a Corrections version 

license. 

Scramble Code Entry 
CorsairHMI includes a special feature for entreating operator logon PIN numbers in corrections systems.  

It is a numeric entry keypad that appears on a touchscreen.  The positions of the numbers on the keypad 

are different every time it appears.  They can be made to change each time a digit is entered.  This is 

helpful in direct supervision situations where inmates may see the touchscreen.  They cannot learn the 

operator code by memorizing the positions of the touches.  The developer must carefully select size, 

color, and font options for the code entry window to make it impossible for the inmates to read.  The 

selections should be checked after the installation is complete.  The code numbers should be changed 

periodically. 

Hook Codes 
During interface operation the operator may ‘hook’ to different placements on the screen by touching 

the surface of a touch monitor or by clicking the mouse. Many types of placements can be hooked 

without being operated. When they are hooked the status window displays data pertaining to the 

placement. 

 Corrections applications frequently require that the PLC has some knowledge of what placement the 

operator is hooked to. An example is when door control, closed circuit TV, and intercom are all 

integrated. When the operator touches the placement corresponding to a cell door the video switcher 

should show him a view of the door and the intercom should be ready to talk to the speaker inside that 

cell. This is accomplished through the use of one or more hook code values that can be associated with 

each screen placement. 

 The computer database has a record for each interface computer mode that is running the application. 

It provides fields that may be used to link each computer up to four hook code devices. These devices 

are used to specify what PLC data addresses receive the hook code values when the operator hooks a 

placement. 



404 | P a g e  
 

 For example, an integer device tagged ‘Camera #’ could be placed on a PLC. Another named ‘Intercom 

Station’ could be placed on the same or a different PLC. The first hook code device for a computer would 

then be set to ‘Camera #’ and the second to ‘Intercom Station.’ Camera numbers for a video switcher 

could range from 1 to 16. Intercom station numbers could be 3-digit values from 100 to 999. As each 

hookable placement is put on the screen it would have a camera number entered into the first hook 

code value and an intercom station number entered into the second hook code value. The PLC would 

then control the video switcher and the intercom so that they would track with the actions of the 

operator.  

The PLC-based hook code approach to integration tends to work more efficiently than direct computer 

control of video and intercom when there are multiple computer interface nodes. Typically, each 

interface computer uses different addresses for its hook code devices. They may be created as separate 

tags. A common alternative is to utilize computer indexing on the hook code devices. This permits using 

the same device tag for hook codes on all computers in the database as long as each computer has a 

unique addressing index. 

The computer writes the hook value(s) into the appropriate devices one time when the placement is 

hooked and the hook code values are non-zero. It writes zeros one time when the placement is 

unhooked. Changing directly from one placement to another that has non-zero hook codes will cause 

the new values to be written without a zero value between them. 

 

Video Switching 
 

A Corsair operator in a corrections facility typically has a computer monitor that displays CorsairHMI 

screens.  He may have one or more separate monitors that show him closed-circuit TV (CCTV) images 

from within the building.  Some systems may display as many as 16 images on sections of a single 

monitor.  These images are ‘static’ because the same camera is displayed at the same place all the time. 

Some systems may have only a single CCTV ‘event’ monitor.  An event monitor changes which camera it 

is displaying based upon an event.  The event may be the operator touching an icon on the Corsair 

touchscreen or someone pushing an intercom call button.  Many systems have a combination of static 

and event-driven CCTV images. 

CCTV systems are of two types.  One type is based upon conventional video signals that travel through a 

shielded coaxial cable.  The other type uses ‘IP’ cameras that feed into an Ethernet network.  

Vicon 
Corsair contains a driver to switch cameras on monitors using a Vicon video switcher. 

 

 



405 | P a g e  
 

Intercom 
 

 
 

The Telecor T3 Intercom Driver 
 

Initial Development 
 
Initial Testing – the T3 Register Monitor 

 
Required Documents 

 
There are two documents besides this one that the Telecor application developer needs.  The other two 
are printed from the Corsair program.  They are the About Driver printout for the T3 driver and the 
Corsair Telecor T3 protocol document. 
 
The About the Driver Printout 

 
The driver About printout can be printed without printing all the other drivers.  Go through 
Edit/Data/Drivers and arrow to the driver that is used to talk to the T3.  Press F6 to go to driver single-
record editing.  The About button is used to make the printout.  It lists all the possible addresses that 
can be used for tags with this driver.  A data source must be created on the driver.  Pressing F6 while on 
the data source record leads to single-record editing of the source.  The ‘reserved addresses’ button is 
used to create the tags.  Some tags will be created with an array size of 1.  These tags will usually be left 
at that size.  Other tags that are initially created with a size of 10 will need to have their size adjusted 
manually by the developer.  For best performance these tags should not be sized much larger than what 
is required. 
 
The end of the About printout shows the value enumerations that are used for the ‘Station LED State’, 
‘Station Page State’, and ‘Network LED State’ tags. 

 
Corsair Telecor T3 Protocol Printout 

 
The second document that the developer should print is the Telecor T3 Protocol section of the Corsair 
Application Manual.  This section details the messages that the Corsair program expects from the T3 and 
the commands that it will send to the T3.  The person that does the T3 programming will need to study 
this so that he can determine what he needs to do. 
 
The manual section is printed through File/Print/Application Manual.  Click on ‘Print’ to select a printer. 
Click on ‘Print Nothing’ to shut off all manual sections. Go to the ‘Reference’ tab.  Check ‘Telecor T3 
Protocol’ and click on ‘OK’. 
 



406 | P a g e  
 

The ‘T3 Default Messages’ are messages sent from the T3 to the Corsair computer.  They correspond to 
the default messages that are suggested by Telecor.  ‘Default Commands’ work in the opposite 
direction.  They go from the Corsair computer to the T3. 
 
Special Messages and Commands will have to be configured as a part of the T3 programming work. 

 
Station State 

 
The driver supports three tag addresses that are integer values corresponding to the status of intercom 
stations.  They are ‘Station LED State’, ‘Station Page State’, and ‘Network LED State’.  Each of these tags 
should be sized to accommodate the number of indexes that are needed on the system. 
 
The ‘Station LED State’ tag contains integer values ranging from 0 through 6 to indicate what the station 
is doing.  The About Driver printout for the Telecor T3 driver gives the definitions for each of these 
states.  The state value can be used to modify what the operator sees on the screen for each intercom 
station.   The developer may choose to place an ellipse to simulate an LED.  The state value can be used 
as an index into a color set for the ellipse so that the LED changes color.  A more common application 
would be to use an icon set.  The state value would be used to determine what icon the operator sees. 
 
When the operator does paging the Telecor T3 does not send messages to the Corsair computer to show 
it what stations are involved.  This would require too many messages for the serial port.  The developer 
may want to show on the computer screen which stations are being paged.  This is the function of the 
‘Station Page State’ tag address.  Normally the value of the page state is identical to the value of the LED 
state.  When the station is being paged the page state value changes to a 7.  This enables a separate 
color or icon in the set to show paging status. 
 
If a system does not utilize paging either the ‘Station LED State’ or ‘Station Page State’ tags can be used.   
Performance would be improved by using ‘Station LED State’ and deleting ‘Station Page State’.  If it is 
desired to indicate paging the ‘Station Page State’ tag is the correct choice. For this tag to work properly 
entries must be made in the ‘Page Zones’ and ‘Page Stations’ auxiliary databases.  The section on Paging 
Indication that is later in this document shows how that is to be done. 
 
Network LED State 

 
Multiple T3 intercoms cam be linked together on a Telecor network where each T3 communicates to a 
separate Corsair computer over a serial port.  Assume that the building A T3 has intercom stations 101 
to 160 on it.  The building B T3 has intercom stations 201 to 260 on it.  It is possible for the Building B T3 
to talk to station 122 in Building A using the Telecor network.  When this happens the ‘Station LED State’ 
and ‘Station Page State’ tags in the Building A Corsair computer will not show the operator tat someone 
else is talking to the station.  This becomes possible with the ‘Network LED State’ tag. 
The first step for this to work is that the T3 programmer must enable the option that sends all messages 
from all the T3s to every computer.  The Corsair developer must then enter a separate data source into 
his application database for each T3 that is on the network.  Contact your Corsair dealer for more 
information as to how to do this. The second document that the developer should print is the Telecor T3 
Protocol section of the Corsair Application Manual.  This section details the messages that the Corsair 



407 | P a g e  
 

program expects from the T3 and the commands that it will send to the T3.  The person that does the T3 
programming will need to study this so that he can determine what he needs to do. 
 
The manual section is printed through File/Print/Application Manual.  Click on ‘Print’ to select a printer. 
Click on ‘Print Nothing’ to shut off all manual sections. Go to the ‘Reference’ tab.  Check ‘Telecor T3 
Protocol’ and click on ‘OK’. 

 
Dial Number Indexing 

 
Each intercom station on the T3 system has a dial number.  41903 would be a possible number.  There 
are several Tag data addresses on the Corsair driver that are arrays.  Each element of these arrays 
corresponds to a station dial number.  The ‘Station LED State’ tag is an example of one of these arrays. 
Corsair defaults to the simplest situation where array element indexes correspond directly to intercom 
dial numbers.  Dial number 41903 corresponds to index 41903 of the array.  This system is easy to 
develop because the tags for the icon for that station would use array index 41903. 
 
The problem with simple dial number indexing is that the tags have to be sized for the highest dial 
number that is on the system.  If dial number 41903 is present the tags must have a size of at least 
41904 to allow for indexes 0 through 41903.  This is true even if there are actually only 200 intercom 
stations on the system. 
 
The Corsair program performs lots of processing on T3 tag data to calculate paging, call group, and 
Network LED status.  With large tag array sizes this processing can become very slow and system 
performance will be unacceptable.  The answer to this problem is to use the Stations auxiliary database. 
The Stations database is used to map Station dial numbers to Tag array indexes.  Now our example tags 
can be sized at 200 instead of 41904.  Dial number 41903 can be linked in the database to tag index 1.  
Tags on the icon for that station would now use an index value of 1 rather than 41903. 
 
Synchronization 

It is possible with systems where intercoms communicate with computers for the two processors to lose 
data synchronization.  If this occurs the computer may not show a call-in that is present or it may show a 
call-in that is no longer active.  Two synchronization techniques can be used with the Corsair T3 driver. 
 
The first option for synchronization is for the Corsair computer to send a CLR clear command when it is 
first started.  It then resets all of its data to zero to clear all calls.  The T3 does the same thing.  The 
assumption is that the computer and T3 are synchronized at this point and they will stay that way.  The 
only advantage of this option is that it requires minimal programming on the T3.  One of the 
disadvantages is that when a Corsair computer is offline and it restarts all T3 call status information is 
lost.  Another disadvantage is that the system has no way to recover from lost communications 
characters. 
 
The answer to these problems is the GCS Get Console State special command.  The Corsair developer 
can block the sending of the CLR command on startup.  He then programs a nonzero synchronization 
time interval on the data source record.  Now the Corsair computer will send a GCS command when it 
starts and at regular time intervals after that.  The T3 is to respond to the GCS with a complete listing of 



408 | P a g e  
 

the status of all stations.  The T3 programmer must configure the intercom to properly handle the GCS 
command. 
 
Call Groups 

Many times it is desirable to show an indication on the Corsair screen if one or more calls have been 
received from a group of stations.  A graphic screen may show an overview of a 5-story building.  There 
may be 5 ‘keys’ (buttons) on the screen to jump to detail views of each of the 5 floors.  The developer 
may want to have each key blink if there is an active call from that floor.  He will want to assign 5 non-
zero call group indexes.  In this case indexes 1 through 5 will correspond to floors 1 through 5. 
 
Three tag addresses are used to set up external page paths with the ‘Call Groups’ auxiliary database.   
The addresses are: 
 
Group Index 
Start Station Index 
End Station Index 
 
Each record of this database assigns a range of station index numbers to a call group.  The database may 
look like this: 
 
Group Index   Call Group Start  Call Group End 
1    100   199 
2    200   299 
3    300   399 
4    400   499 
5    500   599 
1    602   0 
5    708   0 
 
Zero is not a valid group index.  A start or end value of zero is ignored. In this example a 3## call will 
indicate on the third floor call group.  A 1## call or a call from 602 will show on the first floor call group.  
A 5## call or a call from 708 will show on the fifth floor call group. 
 
The ‘Call Group Active’ tag address is used for the indicators that come on when the groups are active.  
The indexes of this tag correspond to the databases Group Indexes.  Index 3 of this tag should be used to 
change color or blink the key for the third floor.  Index 5 would be the indication for the fifth floor. 
 
The ‘Call Group Active’ tag is calculated from the data in the ‘Station Calls’ tag.  It will not work correctly 
if the ‘Station Calls’ tag is not present or is not large enough. 
 
Paging Indication 

Dial numbers can be configured by the T3 programmer to initiate pages to multiple intercom stations.  If 

it is desired to have the ‘Station Page State’ tag properly show what stations are being paged the zone 

information must be programmed into the Corsair system.  This is done with the ‘Page Zones’ and ‘Page 

Stations’ auxiliary databases. 



409 | P a g e  
 

 
External Pages 

The Corsair software is capable of generating pages over the T3 system.  Windows .wav wave audio files 
are the source of the sound.  The output of the computer sound card is fed into the external page input 
of the T3.  The application database contains data describing one or more talk paths for external pages.  
When the computer does a page it opens one of these talk paths, makes the page, and then closes the 
talk path.  It can then open another talk path if desired.  Only one external page talk path can be open at 
a time.  The actual destination of an external page talk path is a property of the T3 programming.  A path 
can go to only a few speakers or to an entire facility. 
 
There does not have to be a unique external page talk path for each wave file that the computer uses.  
Several different wave files may use the same talk path.  One of the first things that the developer must 
do is determine how many external page talk paths are required. 
 
Five tag addresses are used to set up external page paths with the ‘External Pages’ auxiliary database.  
These tags must have a size at least equal to the number of external page talk paths (or larger).  The 
addresses are: 
 
Ext Page Index 
Ext Page Name 
Ext Page Source System 
Ext Page Dest System 
Ext Page Dest Station 
 
The first thing that the developer must do is to define a list of index numbers starting at one for the 
external page paths.  Assume that a building has 5 floors.  The index 1-5 external page paths would be to 
page each of the individual floors.  The index 6 path would be an all-page path for the entire building. 
 
The Source System number on an external page is the system number of the T3 that the computer is 
connected to.  If a nonzero system number is entered here the External Page Start command will use it.  
If this value is left at zero the computer will use the current value of the ‘System Number’ tag.  If it is 
zero the computer will default to using a Source System value of one. 
 
The required values for the Destination System entries are defined by the Telecor EPS command.  The 
Destination Station values are the dial numbers of the pages.  This example assumes 901 through 906. 
 
Assuming a single T3 system the ‘External Pages’ database would look like this: 
 
Index  Name  Source Sys Dest Sys Station 
1  Floor 1  1  1  901 
2  Floor 2  1  1  902 
3  Floor 3  1  1  903 
4  Floor 4  1  1  904 
5  Floor 5  1  1  905 
6  All Page  1  1  906 
 



410 | P a g e  
 

The indexes in this database correspond to elements in the ‘Clear Talk Path’, ‘Request Talk Path’, and 
‘Talk Path Ready’ tags.  The [0] element of each of these tags is not used.  The [3] element of each of 
these tags is used to page the third floor.  The [6] element of each of these tags is used to do an All-
Page. 
 
Three tag addresses are used to coordinate the programs sound logic with the Telecor T3 driver.  Each of 
these tags must have a size at least equal to the number of external page talk paths plus one.  They may 
be sized larger if desired.  These addresses are: 
 
Clear Talk Path 
Request Talk Path 
Talk Path Ready 
 
The next development step is to define the desired sounds.  The Sounds database is accessed under 
Edit/Graphics/Sounds.  Each sound can consist of one or more wave files with an optional delay before 
each wave file is played.  Zooming on the ‘Files’ zoom field allows listing the wave files.  After the wave 
files are entered, escaping back to the Sounds database.  The ‘Play’ field allows the developer to test for 
the expected sound. 
 
The next step is to fill in the rest of the fields on the Sound record.  The RTP Tag field is linked to the 
Telecor drivers ‘Request Talk Path’ tag.  The RTP Index field is set between 1 and 6 to indicate the 
desired talk path – it would be 5 for a fifth floor page.  The RTP Value field is always set to ‘1’ for this 
driver.  The TPR Tag field is linked to the Telecor drivers ‘Talk Path Ready’ tag.  The TPR Index must be 
set to the same value as the RTP index.  The CTP Tag field is linked to the Telecor driver’s ‘Clear Talk 
Path’ tag.  The CTP Index must be set to the same value as the RTP and TPR indexes.  The CTP Value field 
is always set to ‘1’ for this driver. 
 
When the computer wants to use a talk path for an external page it sets a value of 1 into an index on the 
Request Talk Path tag.  The driver looks at what index is nonzero to help it find the correct entry in the 
External Pages database.  It uses this information to form and send an External Page Start command 
through the serial port to the Telecor T3.  When the T3 replies that the command is successful the driver 
turns on the correct index of the Talk Path Ready tag.  The Corsair computer plays the wave file.  It then 
turns on the correct index of the Clear Talk Path tag.  The driver sends External Page End to the T3.  The 
sequence works like this: 
 
Sound Program   Telecor Driver Program   Telecor T3 
Set RTP tag to 1 
    Send EPS command 
         Open Page Talk Path 
         Reply to EPS 
    Set TPR tag to 1 
Play the sound 
Set CTP tag to 1 
    Send EPE command 
         Close Page Talk Path 
 
The ‘Timeout’ field specifies how long the Corsair program will wait for the ‘Talk Path Ready’ signal from 
the Telecor.  If it does not get TPR within this amount of time the wave file is played and the sequence 



411 | P a g e  
 

continues normally.  The timeout should be set to a value longer than the longest possible T3 response 
time.  Note that External Pages should receive a very high priority in the T3 program for this system to 
work.  If the timeout is set to zero or if a TPR tag is not listed the computer will play the wave file 
immediately without waiting for the T3 to open a path. 
 
SQL Event Logging 

Call-ins generated from the T3 may be logged into an SQL database using the Corsair event logging 
system. 
 

Duress 
Duress and man-down systems are used to alert others when an individual has been attacked or that 

some form of emergency help is needed.  Corsair can interface to a wide variety of duress equipment. 

Guard Tour 
Guard tour systems are used to verify that corrections officers make proper rounds inspecting parts of a 

facility. 

Access Control 
Access control systems are used to permit properly authorized individuals to get into restricted areas of 

a facility.  Corsair can be used to interface between an access control system and a video management 

system.  It can switch camera views on a monitor when a card is scanned.  Some systems may show a 

picture of the individual that the card is issued to.  If the person at the door matches the picture the 

operator opens the door. 

The access control systems drivers in Corsair require both ‘Access Control’ and ‘Corrections’ capabilities.  

These may be verified from the main menu by clicking on ‘Help”’About’ and selecting the ‘Build’ option.  

This opens the Build Properties window. 



412 | P a g e  
 

 

Both ‘Build’ and ‘License’ must be checked for Access Control and Corrections on this window.  If ‘Build’ 

is not checked the developer must get a different version of the Corsair program.  If ‘License’ is not 

checked CorsairHMI must be contacted for a different license file. 

Doors 
Corrections institutions usually have electrically operated doors.  Any version of the Corsair program can 

be used along with a PLC to operate doors.  This type of door operation is similar to what could be done 

with a general-purpose interface program.  Corsair offers more advanced door operations with its 

corrections version license option.  It should be considered for any facility with more than 10 controlled 

doors. 

Door Types 

The first step for doing the PLC programming of a CorsairHMI door is to determine its type.  The type 

determines show the F1 through F4 keys are used to control the door.  It also determines the 

requirements for the secure indication.  The secure indication is the signal from the PLC to Corsair that 

the door is properly closed. 

The ‘Monitored’ type is for a door whose status is shown on the computer but it is not controlled by the 

PLC.  Mechanically keyed doors are monitored.  They have some combination of a door position and a 

bolt position switch to wire to a PLC input for the secure indication.  The F1-F4 keys are not used for 

monitored doors. 

The ‘Half-Cycle’ type door is controlled by the PLC.  It is a solenoid or a motor lock without mechanical 

hold-back of the bolt.  It uses the F1 key for an unlock button and the F2 key for a lock button.  Usually 

F1 energizes the solenoid and F2 de-energizes it.  The Half-Cycle name comes from motor locks where 



413 | P a g e  
 

F1 makes the motor rotate through half its cycle and F2 finishes the rotation.  The locked or unlocked 

status of the door must not change when the PLC power is cycled.  Half-cycle locks are a frequent choice 

for fire egress doors.  Sometimes the solenoid is energized to secure the door in these applications. 

The ‘Full-Cycle’ type door is controlled by the PLC.  They are motor or solenoid locks with mechanical 

hold-back.  The motor runs a cycle or the solenoid energizes for a period of time.  The bolt is pulled in.  It 

stays retracted until someone pulls the door open and then shuts it.  The interface has an F1-Unlock 

option.  There is no lock option from the computer. 

Full cycle locks are used in high traffic applications where the operator unlocks the door.  He does not 

have to wait for someone to go through it before he tells the door to lock.  Full cycle locks are not to be 

used in fire egress applications. 

The ‘Slider’ type is used for sliding doors and gates.  They are powered open or closed and capable of 

being stopped in mid-travel.  The interface has F1-Open, F2-Close, and F3-Stop options. 

PLC logic for a slider must include anti-plugging timers.  Plugging a motor means taking it from open to 

close or close to open without allowing it to come to a stop.  Plugging is damaging to electrical and 

mechanical components.  When a motor that is opening a door stops in mid-travel the door will tend to 

rock open slightly and then rock back in the closed direction.  If the anti-plugging timer is properly set 

the motor will restart in the close direction at just the right time to make for smooth motion with a 

minimal amount of noise and wear on the gear train.  To avoid delays the programmer must take care 

that the anti-plug timer only is in use when it is needed.  If the door is fully closed the timer is not 

needed to start open motion. 

‘Dual-Cycle’ type doors are doors that can be operated in two different modes – both Full and Half cycle.  

The interface has F1-Unlock, F2-Lock, and F4-Hold options.  F1 is used for a full-cycle operation where 

the door will relock by itself when closed.  F4 is used for the half-cycle unlock function where the door 

will remain unlocked until F2 is used to lock it. 

PLC operated doors are frequently interlocked in corrections applications.  If two doors are in an 

interlock scheme only one of them can normally be opened at a time.  Interlocks may need to be shut 

off for special situations like firefighter access. 

Door Registers 

PLC door data is kept in a 16-bit register.  Each of the bits has a different function depending on the type 

of the door.  Some bits act like Corsair indicators where the PLC turns them on and off and the interface 

displays the status.  Some bits act like Corsair switches where the computer turns them on and off and 

the PLC uses the status.  Some bits act like Corsair buttons where the computer turns them on and the 

PLC shuts them off.  One of the most important considerations with door programming is proper 

behavior when the PLC power is cycled.  Generally the switch type bits must be retentive.  That means 

that whatever status they had when the power is shut off is still there when the power is turned back 

on.   The button type bits must be shut off when the power restarts.  Button actions that were 



414 | P a g e  
 

performed with the PLC in Halt need to be zeroed out and ignored on the first scan.  Some indicators 

need to be retentive and some are not. 

A programmer using a PLC with Modbus style addresses may place the first door at bit 00001 through 

bit 00016.  The second door may take bit 00017 through bit 00032.  Another possibility is for the first 

door to use Holding Register 40001.  The bits would be 40001/0 to 40001/15.  The second door could go 

into Holding Register 40002.  Input Registers like 30001 cannot be used for doors since the computer 

cannot write data to them.   Inputs bits like 10001 cannot be used for the same reason. 

The Modbus protocol does not specify the power cycling retention rules for different data types.  It is up 

to the PLC manufacturer so their documentation must be consulted for retention rules.  Frequently the 

door status data is held in retentive memory.  The programmer defines a single ‘Power-Up’ boolean 

variable.  It comes up False (0) on the first scan when the PLC starts.  30 seconds later it is set to True (1).  

Door operations are not allowed until Power-Up is true.  This allows time for remote I/O and peer-to-

peer communications to get started first.  This use of the Power-Up signal can help guarantee that the 

PLC follows the proper memory retention rules. 

Another concern for the PLC programmer is the method that CorsairHMI must use to change the bit 

data of the type that he has chosen for the door register.  Data in Modbus 0#### coils can be written on 

an individual coil basis. Corsair can turn a button on without changing any of the other bits in the 

register.  4#### holding registers are a different issue.  Some PLC’s support a bitmasked write command 

where Corsair sends a pattern of 1s and 0s that the PLC uses to only change the desired bit of the 

register.  If a PLC does not support this command Corsair must use a Read-Modify-Write (RMW) 

operation.  It reads the holding register and then writes that value back to the PLC with the desired bit 

changes.  Problems can occur if the PLC logic changes bits in the short time between when Corsair reads 

the value and then writes it back.  Any PLC logic, including the samples given here, must be evaluated by 

the PLC programmer to see that it will always work correctly with a RMW operation.  Bitmasked writes 

should be used whenever possible to avoid issues and speed up door operations. 

This document refers to the bits of the door status register as bit 0 through bit 15.  Bit 0 is the least 

significant bit and bit 15 is the most significant.  If a door is located at Modbus coil addresses 00017 

through 00032 coil 00017 is bit 0 and coil 00032 is bit 15.  A door located at Modbus Holding Register 

address 40010 has 40010/0 for bit 0 and 40010/15 for bit 15. 

Each of the 16 different bits of a door register has a name and function that depends on the door type.  

There are some general rules that can be considered before looking at each of the 5 door types.  In cases 

where a bit is supposed to always be on or off the register bits are not to be trusted as they can be 

changed from external data communications.  PLC logic should be written to force these bits to always 

be the correct value. 

Bit 0 is always used as the ‘Secure’ bit.  It is an indicator that is turned on and off by the PLC.  It should 

be on only if all conditions securing the door are true.   This bit is what Corsair uses to show the status of 

the door on the screen.  The programming for the Secure bit varies with the type of the door.  It is 

usually at the end of the logic.  The Monitored door is the only type where the Secure bit is only 



415 | P a g e  
 

dependent on the Door Position Switch indication.  For all the PLC-controlled door types the door is 

secure if the switch is correct and the PLC is not trying to open the door.  This will help to prevent false 

secure indications when switches are defective. 

Bit 1 is always used as the ‘DPSI’ ‘Door Position Switch Indication’ bit.  It acts as an indicator.  Most door 

hardware provides a signal to a PLC input that shows the door is secure.  This signal is usually from more 

than one switch wired in series.  There may be both a door position and a bolt position switch.  The DPSI 

indicator is controlled from one or more DPS PLC inputs in a series (AND) configuration.  This is usually at 

the beginning of the logic.  The DPSI bit is used as a part of the logic for the status of the Secure bit. 

Bit 2 is sometimes used as the ‘P_Cust’ ‘Protective Custody’ bit.  It acts like a switch.  The computer 

turns it on (1) for the door to have protective custody status.  The operator will then have to answer a 

special prompt to open the door.  If the computer turns the bit off (0) the door can be operated 

normally.  The status of this bit must be retained through a power failure.  Some projects may require a 

high-security door to always have protective custody.  Other doors should never have that status.   In 

these cases PLC logic should explicitly force the bit on or off. 

Bit 3 is sometimes used as the ‘Access’ ‘Inmate Access’ switch.  If it is on the inmate can open his cell 

door through some means.  If it is off the inmate cannot open the door.  It must be retentive. 

Bit 4 is sometimes used as the ‘CTRL’ ‘Interface Control’ switch.  The use of this switch is entirely up to 

the PLC programmer.  The Corsair program can turn it on and off but it makes no assumptions about 

what the switch is used for.  Cell lighting is a possibility.  It may or may not retain at the discretion of the 

PLC programmer. 

Bit 5 is sometimes used as the ‘ILockO’ ‘Interlock On/Off’ switch.  If the computer turns it on (1) the 

door’s interlocks are active and it cannot be opened until other doors are secure.  If the computer turns 

it off (0) the interlock has been overridden and the door can be opened.  It must be retentive.  Some 

high-security applications may require this bit to be forced on in PLC logic so the interlock cannot be 

shut off.  Firefighter access must be considered in making this decision. 

Bit 6 is sometimes used as the ‘ILockP’ ‘Interlock Permissive’ indication. The PLC turns this bit on if all 

other doors in the interlock scheme are secure so the door may be opened.  If the ILockO bit is off the 

ILockP bit is turned on.  If a door is not interlocked ILockP should be turned on all the time. 

Assume that doors A, B, C, and D are all interlocked so only one can be opened at a time.  Ladder logic 

for the ILockP on door A would look as follows: 

Secure_B         Secure_C       Secure_D             ILockP_A 

---|  |---------------|  |-----------|  |-------+---------(  )----- 

ILockO_A                                                  | 

---|/|------------------------------------------+ 



416 | P a g e  
 

If door E is not interlocked the ILockP bit should be forced on. 

                                                                         ILockP_E 

----------------------------------------------------------(  )----- 

Bits 8, 9, 10, and 11 are used for the F1, F2, F3, and F4 keys.  The purpose varies with door type but in 

each case they act like button tags.  Corsair turns the bit on when the operator hits the key and the PLC 

turns it off after performing the desired action. 

Any of the 4 button bits that are used for a lock need to perform their action if and only if the Power_Up 

signal is true.  After examining the bits the PLC should always shut them off. 

                                                                            Button 

----------------------------------------------------------( U )----- 

Keys hit before Power_Up will be ignored.  This effectively makes the buttons nonretentive. 

Bits 12 is unused and can be used for any purpose. Bit 13 is reserviced for future versions of the Corsair 

program. 

There is a Door data maintenance popup available from an operator screen.  Hook the cursor to a door 

placement and press the ‘M’ maintenance key. 



417 | P a g e  
 

 

The maintenance window shows the name of the door, what PLC it is on, its type, the address of each 

door register bit and its current on-off status. 

The following sections give specific information as to the bit assignments for each of the door types.  

Some suggestions for PLC logic are included.  In every case the PLC programmer must assume final 

responsibility for what the PLC does.  Lockdown and Fire Egress must be taken into account.  

Monitored Doors 

Bit 0 – Secure – Indicator 

Bit 1 – DPSI – Door Position Switch Indication - Indicator 

Bit 2 – P_Cust – Protective Custody – Switch       Do not use on a monitored door. 

Bit 3 – Access – Switch 

Bit 4 – CTRL – Interface Control – Switch 

Bit 5 – Unused1 – Switch       Use for any purpose 

Bit 6 – Unused2 – Available for any use 



418 | P a g e  
 

Bit 7 – Unused3 – Available for any use 

Bit 8 – Button1 – F1 Key – Button     Do not use 

Bit 9 – Button2 – F2 Key – Button     Do not use 

Bit 10 – Button3 – F3 Key – Button     Do not use 

Bit 11– Button4 – F4 Key – Button     Do not use 

Bit 12 - Future1 - Do not use     Reserve for future versions of Corsair 

Bit 13 - Future2 - Do not use    Reserve for future versions of Corsair 

Bit 14 – Unused4 – Available for any use 

Bit 15 – Unused5 – Available for any use 

 

Pseudo Code: 

 DPSI = DPS;   (* Copy DPS input into the DPSI Indicator *) 

 SECURE = DPSI;  (* Copy the DPSI Indicator into the Secure bit *) 

Ladder: 

 DPS  % I                                          DPSI 

             -----|  |---------------------------------(  )--- 

   DPSI                                           Secure 

             -----|  |---------------------------------(  )--- 

 The door is secure when the switch is on. 

 

Half-Cycle Doors 

Bit 0 – Secure – Indicator 

Bit 1 – DPSI – Door Position Switch Indication - Indicator 

Bit 2 – P_Cust – Protective Custody – Switch     

Bit 3 – Access – Switch 

Bit 4 – CTRL – Interface Control – Switch 



419 | P a g e  
 

Bit 5 – ILockO –Interlock On/Off -  Switch 

Bit 6 – ILockP –Interlock Permissive – Indicator 

Bit 7 – Unused1 – Available for any use 

Bit 8 – Unlk_B  – Unlock F1 Key – Button  

Bit 9 – Lock_B - Lock F2 Key – Button  

Bit 10 – Button3 – F3 Key – Button     Do not use 

Bit 11– Button4 – F4 Key – Button     Do not use 

Bit 12 - Future1 - Do not use     Reserve for future versions of Corsair 

Bit 13 - Future2 - Do not use    Reserve for future versions of Corsair 

Bit 14 – Hold_Open – Indication 

Bit 15 – Unused2 – Available for any use 

The Hold-Open bit should be retentive, especially for a fire egress door. 

 

Pseudo Code: 

 DPSI = DPS;   (* Copy DPS input into the DPSI Indicator *) 

 Calculate ILockP 

 If Unlk_B AND ILockP and Power_Up – Turn on Hold_Open 

 IF Lock_B AND Power_Up – Turn off Hold_Open 

 Reset Unlk_B to 0 

 Reset Lock_B to 0 

 Copy Hold_Open to External Output %Q 

 SECURE = DPSI AND (NOT Hold_Open;   

Ladder 

 



420 | P a g e  
 

 

 

 

 

  

 

Full-Cycle Doors 

Bit 0 – Secure – Indicator 



421 | P a g e  
 

Bit 1 – DPSI – Door Position Switch Indication - Indicator 

Bit 2 – P_Cust – Protective Custody – Switch     

Bit 3 – Access – Switch 

Bit 4 – CTRL – Interface Control – Switch 

Bit 5 – ILockO –Interlock On/Off -  Switch 

Bit 6 – ILockP –Interlock Permissive – Indicator 

Bit 7 – Unused1 – Available for any use 

Bit 8 – Unlk_B  – Unlock F1 Key – Button  

Bit 9 – Button2 - F2 Key – Button   Do not use 

Bit 10 – Button3 – F3 Key – Button     Do not use 

Bit 11– Button4 – F4 Key – Button     Do not use 

Bit 12 - Future1 - Do not use     Reserve for future versions of Corsair 

Bit 13 - Future2 - Do not use    Reserve for future versions of Corsair 

Bit 14 - Cycle – Indicator 

Bit 15 – Unused2 – Available for any use 

With a full-cycle lock the output is held on for a fixed period of time.  Full cycles may be solenoids or 

motors.  If it is a solenoid the timing must be long enough to make sure the bolt is pulled solidly into the 

mechanical holdback.   Motor Full Cycles sometimes use a microswitch on a cam to keep the motor 

running through a complete cycle.  The minimum and maximum times for the output need to be 

determined.  To get the minimum time reduce the timing until the lock occasionally does not do a 

complete cycle since the motor doesn’t have enough movement to get to the latching microswitch.  To 

get the maximum time increase the timing until the motor occasionally does two complete cycles 

instead of one.  The correct time to use for the setpoint is halfway between this minimum and 

maximum. 

Pseudo Code: 

 DPSI = DPS;   (* Copy DPS input into the DPSI Indicator *) 

 Calculate ILockP 

 If Unlk_B AND ILockP AND Power_Up – Turn on Cycle 

 If Time - Turn off Cycle 



422 | P a g e  
 

 On-Delay Timer – Input is Cycle, Output is Time 

 Reset Unlk_B to 0 

 Copy Cycle to External Output %Q 

 SECURE = DPSI AND (NOT Cycle);  

Ladder: (Not Complete) 

 

  

 

 

Sliders 

Bit 0 – Secure – Indicator 

Bit 1 – DPSI – Door Position Switch Indication - Indicator 



423 | P a g e  
 

Bit 2 – P_Cust – Protective Custody – Switch     

Bit 3 – Access – Switch 

Bit 4 – CTRL – Interface Control – Switch 

Bit 5 – ILockO –Interlock On/Off -  Switch 

Bit 6 – ILockP –Interlock Permissive – Indicator 

Bit 7 – Open_Limit – Optional Door Fully Open Indication 

Bit 8 – Open_B  – Open F1 Key – Button  

Bit 9 – Close_B - Close F2 Key – Button  

Bit 10 – Stop_B  – Stop F3 Key – Button 

Bit 11– Button4 – F4 Key – Button     Do not use 

Bit 12 - Future1 - Do not use     Reserve for future versions of Corsair 

Bit 13 - Future2 - Do not use    Reserve for future versions of Corsair 

Bit 14 – Opening – Indication 

Bit 15 – Closing – Indication 

Both the Opening and Closing indications need to go to zero when Power_Up is not on. 

Many times sliders and gates do not have full-open switches wired to the PLC.  The Open output is 

energized for a fixed time period in these cases.  The Close output is shut off when the closed limit 

switch is reached.  It needs to also be timed off in case the limit switch is defective.  Outputs without 

timeouts may be dangerous for maintenance people working on the door as they could cause 

unexpected door operation.  Timeouts should be set for the normal full travel time plus a few seconds.  

Pneumatic doors may have more variations in travel times than motorized doors so they should get 

longer timeouts. 

Pseudo Code: 

 DPSI = DPS;   (* Copy DPS input into the DPSI Indicator *) 

 SECURE = DPSI;  (* Copy the DPSI Indicator into the Secure bit *) 

Ladder: (Not complete) 



424 | P a g e  
 

 

 

 

 

 



425 | P a g e  
 

 DPS  % I                                          

 

Dual-Cycle Doors 

Bit 0 – Secure – Indicator 



426 | P a g e  
 

Bit 1 – DPSI – Door Position Switch Indication - Indicator 

Bit 2 – P_Cust – Protective Custody – Switch     

Bit 3 – Access – Switch 

Bit 4 – CTRL – Interface Control – Switch 

Bit 5 – ILockO –Interlock On/Off -  Switch 

Bit 6 – ILockP –Interlock Permissive – Indicator 

Bit 7 – Cycle – Full Cycle Indication 

Bit 8 – Unlk_B  – Unlock F1 Key – Button  

Bit 9 – Lock_B - Lock F2 Key – Button  

Bit 10 – Button3 – F3 Key – Button     Do not use 

Bit 11– Hold_B – Hold F4 Key – Button    

Bit 12 - Future1 - Do not use     Reserve for future versions of Corsair 

Bit 13 - Future2 - Do not use    Reserve for future versions of Corsair 

Bit 14 – Hold_Open – Indication 

Bit 15 – Unused1 – Available for any use 

The timing guidelines for a dual-cycle door are the same as for a full-cycle. 

Pseudo Code: 

 DPSI = DPS;   (* Copy DPS input into the DPSI Indicator *) 

 Calculate ILockP 

 If Unlk_B AND ILockP AND Power_Up – Turn on Cycle 

 If Time – Turn off Cycle 

 On-Delay Timer – Input is Cycle, Output is Time 

 If Hold_B AND ILockP AND Power_Up – Turn on Hold_Open 

 If Lock_B – Turn off Hold_Open 

 Reset Unlk_B to 0 



427 | P a g e  
 

 Reset Lock_B to 0 

 Reset Hold_B to 0 

 External Output %Q = Cycle OR Hold_Open 

 SECURE = DPSI AND (NOT Cycle) AND (NOT Hold_Open); 

Ladder: (Not complete) 

  

 

 

 

Corsair BACnet Access Control Shims 
The CorsairHMI program has build and licensing options for use with Access Control systems. 

Manufacturers of these systems do not seem to have standardized protocols to communicate with their 

servers. They typically have some sort of graphic ‘map’ software that talks very well to their system but 

not well to other equipment. If an integrator wants to interface to an access control system he must use 



428 | P a g e  
 

their ‘SDK’ or ‘API.’ This involves programming for tasks that should be doable at a technician level. It 

may involve writing project-specific .NET compatible code. This is clearly not acceptable.  

The CorsairHMI program uses ‘shim’ or ‘middleware’ software between each manufacturers API and 

Corsair. Each shim translates from the API to a standardized form that Corsair can use. The Corsair 

developer can use the same procedures for different brands of Access Control equipment as the data 

from each is ‘normalized’ to the same standard.  

The shims do not need to utilize the full capabilities of each manufacturer’s API. Typically they need to 

view door status, open doors, monitor inputs, and control outputs. The shims should not perform any of 

the ‘IT’ functions like adding or deleting credentials. Access control software should be administered by 

access control software, not by operator interface software. 

The shim should require very little configuration. Typically a username, password, and maybe a server 

address is adequate. The Corsair developer should not have to put a list of doors into the shim. It should 

automatically discover that list. The next requirement for an ideal shim is that Corsair can automatically 

discover that list.  

Facilities with multiple interface computers should have the option of only requiring one instance of the 

shim. This is to minimize communications transfers to the access control server. The shim must be 

network accessible from several computers. This should be using an open vendor-independent protocol. 

CorsairHMI has chosen BACnet/IP for this purpose. BACnet has software ‘objects’ that are specifically 

designed for Access Control. It has a well-defined discovery mechanism with free BACnet explorers. The 

shim could be used by itself without Corsair to tic the access control system to a building automation 

controller.  

Each door on the access control system should show on the BACnet side as ‘Access Door’ object type. 

Card readers show as an ‘Access Point’ object type. Output points that are not used for doors should 

show as a ‘Binary Output’ object type. Discrete inputs should show as a ‘Binary Input’ type. BACnet 

instance numbers for these objects are determined by the requirements of the shim.  

Corsair Access Control Description Architecture 

Corsair shims can permit discovery of the access control system using a standard BACnet explorer. 

Corsair includes a minimal explorer that can be used to generate door and tag records based upon data 

it receives from the shim. 

BACnet includes a ‘structured view’ object type that can be used to organize data in a tree-style manner. 

Corsair can generate access control system architecture documents if the shim generates structured 

view objects in a specified pattern. 

 

 



429 | P a g e  
 

 SV-Server 

   SV-Site 1  

   SV-Site 1 Panel List 

     SV-Site Panel 1 

      SV-Door List 

       ACD-Door 

       ACD-Door 

      SV-Reader List 

       AP-Reader 

       AP-Reader 

      SV-Input List 

       BI-Input 

       BI-Input 

      SV-Output List 

       BV-Output 

       BV-Output 

     SV-Site 1 Panel 2 

    SV-Site 1 Room List 

     AZ-Access Zone 

     AZ-Access Zone 

 SV-Site 2 

Many access control systems may not be able to generate all the features of this pattern.  

Each Structured View BACnet object has a Node_Type property. Suggested values of these properties 

are: 

 

 



430 | P a g e  
 

 SV-Server   SYSTEM 

 SV-Site    AREA  

 SV-Panel List   COLLECTION 

 SV-Room List   COLLECTION 

 SV-Door List   SECTION 

 SV-Reader List   SECTION 

 SV-Input List   SECTION 

 SV-Output List   SECTION 

Each Access Point object that represents a reader should support the following properties: 

 Property – Access Doors 

 Property – Zone To 

 Property – Zone From 

Each Access Zone that represents a room : 

 Property_Entry Point 

      Et Point 

The Corsair CorKey Shim 
CorsairHMI can be used to Monitor and control doors that are on a Keyscan access control system. The 

Keyscan system uses an SDK (Software Development Kit) that requires a program written with the 

Microsoft .NET framework. The CorKey shim is a .NET program that passes data between a Keyscan 

server and the Corsair program. Corsair communications with CorKey over UDP using the BACnet/IP 

protocol.  

A Corkey installation requires the ‘corkey.exe’ program that is available through CorsairHMI. It cannot 

run on the same computer as the Corsair interface that accesses it. 

Create a c:\corkey folder on the machine that is to run the program. Copy the corkey.exe program into 

that folder. 3 more files must be copied into this folder. They are .dll files that come with the Keyscan 

sdk. They are: 

 AuroraSDK.dll 

 BaseClassLibrary.dll 

 Base Class Library Extension.dll 



431 | P a g e  
 

There is an additional text file that comes with the sdk. It is ‘serversettings.xml’. It must be located in the 

c:\ProgramData\Keyscan\Aurora folder. The ProgramData folder is typically hidden when exploring the 

c: drive in Windows. It must be made visible and then the \Keyscan\Aurora folders have to be put under 

it. An example of the file is included with the SDK. This is typical fil content:  

 <?xml version=”1.0” encoding=”utf-8”?> 

 <SQLServer> 

 <ServerName>192.168.1.15</ServerName> 

 <EPlexServer>192.168.1.15</EPlexServer> 

 <ServerInstance>AURORA</ServerInstance> 

 </SQLServer> 

Supported BACnet Properties 

Corkey makes each Keyscan door appear as an instance of a BACnet Access Door object. It supports a 

minimum of five BACnet properties of each Access Door object. 

 

 

 

 

BACnet Present Value Property 

Corsair can read and write the Present_Value property. It may write three BACnet standard 

enumerations.  

 

 

 
Corsair will not write the 3-Extended Pulse unlock value. It may write 1024 as a proprietary enumeration 

to stop a sliding door. When Corsair reads the Present_Value properly CorKey returns the last value that 

was written to it. This return value is initialized at zero when CorKey starts before the first write occurs.  

BACnet Door Status Property 

Corsair can read the Door_Status property. CorKey determines what value to return based upon the 

Door Status of the Keyscan door.  

1. Present_Value 

2. Door_Status 

3. Lock_Status 

4. Secured_Status 

5. Door_Alarm_State 

0 – Lock 

1 – Unlock 

2 – Pulse Unlock 



432 | P a g e  
 

 

 

 

 

BACnet Lock Status Property 

Corsair can read the Lock_Status property. CorKey determines what value to return based upon the 

Door Status of the Keyscan door.  

 

 

 

BACnet Secured Status Property 

Corsair can read the Door_Alarm_State property. 

BACnet Secured Status Property 

Corsair can read the Secured_Status property. CorKey determines what value to return based upon the 

Door Status Alarm Share and Troubleshoot of the Keyscan door.  

BACnet 0 – Secured – Keyscan Door Status is ‘Locked’ AND 

 Keyscan Alarm State is ‘Normal’ AND 

 Keyscan Trouble State is ‘Normal’ 

BACnet 1 – Unsecure – Keyscan Door Status is ‘Unlocked’ AND 

 Keyscan Alarm State is ‘Normal’ AND 

 Keyscan Trouble State is ‘Normal’ 

BACnet 2 – Unknown – Keyscan Door Status is ‘Unknown’ OR 

 Keyscan Alarm State is not ‘Normal’ OR 

 Keyscan Trouble State is not ‘Normal’ 

 

 

BACnet 0 closed – Keyscan 1 locked 

BACnet 1 opened – Keyscan 2 unlocked 

BACnet 2 unknown – Keyscan 0 Unknown 

BACnet 0 locked – Keyscan 1 locked 

BACnet 1 unlocked – Keyscan 2 unlocked 

BACnet 4 unknown – Keyscan 0 Unknown 



433 | P a g e  
 

 

Corkey BACnet Instance Conventions 

Corkey has a convention for assigning instance numbers to BACnet objects. This convention allows for a 

maximum of 100 doors, 100 readers, 100 inputs, and 100 outputs on a panel. It allows for up to 100 

panels on a Keyscan Site. The Keyscan programmer has more than 100 panels he must divide them into 

multiple sites. Corkey is limited to 200 sites. Door instance numbers follow this pattern: 

 Site 1   Panel 1  Instances 1-100 

   Panel 2  Instances 101-200 

   Panel 3  Instances 201-300  

 Site 2  Panel 1  Instances 10001-10100 

   Panel 2   Instances 10101-10200 

   Panel 3   Instances 10201-10300 

 Site 3  Panel 1  Instances 20001-20100 

   Panel 2   Instances 20101-20200 

 Site 200 Panel 1  Instances 1990001-1990100 

   Panel 100 Instances 1999901-200000 

Keyscan doors appear as BACnet ACD ‘Access Door’ objects using these instance numbers. Keyscan 

readers appear as BACnet ACP ‘Access Point’ objects using these instance numbers. Inputs appear as BI 

‘Binary Input’ objects and Outputs appear as BV ‘Binary Value’ objects using these same instance 

numbers. 

The 100 BI Binary Input instances are further reserved as follows: 

 1-32   Panel Aux Inputs 

 33-48  First IOCB1616 Board 

 49-64   Second IOCB1616 Board 

 65-80  Third IOCB1616 Board  

 81-96  Fourth IOCB1616 Board 

 97-100  Not Used 

The same pattern works for the 100 BV Binary Value instances for Outputs. 

Corkey does not support the ‘Room List’ feature with BACnet Access Zones. 



434 | P a g e  
 

The instance numbering convention must be extended to allow for Structured View objects. The 

instance number for the structured view representing a panel is equal to the first door instance number 

on that panel. The subordinate lists are numbered consecutively from there. 

 SV-Server-Instance 2000401  

  SV-Site 1 – Instance 2000001 

   SV-Site 2 Panel List – Instance 2000202 

    SV-Site 1 Panel 1 – Instance 1 

     SV-Door List – Instance 1 

      ACD-Door – Instance 1 

      ACD-Door - Instance 2 

     SV-Reader List – Instance 3 

      AP-Reader – Instance 1 

      AP-Reader – Instance 2 

     SV-Input List – Instance 4 

      BI-Input – Instance 1 

      BI-Input – Instance 2 

     SV-Output List – Instance 5  

      BV-Output – Instance 1 

      BV-Output – Instance 2 

    SV-Site 1 Panel 2 – Instance 101 

   SV-Site 2 – Instance 2000002  

CorsairHMI Glossary 



435 | P a g e  
 

Computer Configuration 

A disk file named with a ‘.cfg’ extension that describes the characteristics of a computer to the Corsair 

program.  Corsair uses this file to make many determinations as to how it should look and act. 

 

Corrections 

A version of the CorsairHMI program with specialized features for use in jails and prisons. 

 

Corrections Intercom 

An intercom with features that make it desirable for use in a prison.  Typically, these include transfer of 

control, audio threshold monitoring, and multiple simultaneous talk paths. 

 

Data Log 

A CorsairHMI database item that specifies how the computer is to save data to a disk file or to print.  A 

data log executes its task when it is triggered. 

 

Data Source 

A ‘data source’ usually refers to a device that the CorsairHMI program talks to.  A Programmable Logic 

Controller (PLC) can be a data source. 

 

Drawing 

A drawing is an image made up of a collection of placements.  A link to a drawing can be placed multiple 

times on a screen. 

 

Driver 

A portion of the CorsairHMI proram that uses a protocol to communicate with a piece of equipment.  

Different driver types use different protocols. 

 

DXF Import 



436 | P a g e  
 

Uses a DXF file that has been created by a CAD program to create a Corsair drawing. 

 

Hook Code 

One of four integer values associated with a placement.  The value is written to a tag when the operator 

clicks on the screen.  Most commonly used in corrections applications. 

 

I/O Module 

A screen image that the operator sees.  It shows things in a standardized format.  Frequently it looks like 

a PLC input or output module. 

 

Intermodel driver 

A driver that is used to communicate data between different models that are used by the same Corsair 

program. 

 

MET – Mobile Equipment Tracking 

A set of CorsairHMI features designed to work with a GPS to track things that are moving around. 

 

Model 

A CorsairHMI model is a disk file containing data records that describe what the program is to do for an 

installation.  It contains descriptions of drivers, data sources, tags, screens, sheets, and several other 

items.  Some versions of the Corsair program can utilize up to 100 models at the same time. 

 

Placement 

A component of the image that is created on a drawing or a screen so that a human operator can see it.  

Lines, rectangles, text, and keys are types of placements.  Each placement has a type and an action. 

 

Placement Action 



437 | P a g e  
 

The’ action’ of a graphic placement determines what it does when an operator clicks on it with a mouse 

or touches it on a touchscreen.  Some actions determine when the placement is visible and when it 

blinks. 

 

Placement Type 

The ‘type’ of a graphic placement determines what it looks like on the computer screen.  Types include 

lines, rectangles, ellipses, and text. 

 

Preferences 

A disk file named ‘corsair.pre’ that describes how the developer prefers that the Corsair act while he is 

doing development work. 

 

Screen 

A collection of graphic placements that is displayed for an operator to see and click on. 

 

Script 

A CorsairHMI database item that specifies a series of steps.  Each step corresponds to something that 

the computer is to do when the script is started. 

 

Sheet 

A method for the CorsairHMI program to show words and numbers in a scrollable row and column 

format. 

 

Tag 

A tag is a storage location in computer memory that holds data while the Corsair program is running. 

 

Tank 

A placement type used to display a horizontal or vertical cylindrical tank with a varying liquid level. 



438 | P a g e  
 

 

TBT – Turn Back Time 

A CorsairHMI feature where the computer attempts to show an operator what an interface screen 

looked at some time in the past. 

 


